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1 Introduction

The definition of Big Data varies with the domain of application. General char-
acteristics of Big Data are high volume, data-collection rate, variety of both data
structures and storage platforms; the impact of one or more of these characteristics
depends on the application. Often Big Data are second-hand, that is, the available
data is not collected for analysis purposes in the first place. Compared to Big Data,
survey data have opposite characteristics: in fact, survey data usually come in low
volume, and they are thoughtfully collected for analysis purposes [3]. Therefore,
survey data are referred to as an example of Small Data [8]: in some applications it
is better-off having a low volume of high quality data to study a phenomenon. The
definition of Small Big Data [4] refers to data structures that merge (some of) the
characteristics of Big Data (high volume, different sources), and Small Data (high
quality, carefully collected). Large scale, complex-structured survey data, that can
be referred to as Small Big Data, are analysed in the private and public sectors:
such data structures are characterised by a large number of polytomous or mixed at-
tributes, by the possible presence of latent groups of observations and of block-wise
structure of attributes. We confine our analysis in this framework studying Small
Big Data related to Distance Learning (DL), a recent phenomenon that, because of
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e-mail: rosaroma@unina.it

1



2 Iodice D’Enza A., Iannario M., Romano R.

the Covid-19 pandemic, had a dramatic increase. Measuring the impact of DL on
students is of crucial importance; the technical setbacks that jeopardise the learning
experience, are relatively easy to identify and to quantify. A more sensitive issue is
to study the effects of the DL on students from a social and psychological perspec-
tive. In order to investigate the faceted DL impact on students, we considered three
different scales proposed and validated in the literature. In particular, we examined
the scale proposed by [1] to study the perspective of DL high-educated students;
two further scales were considered, the ‘student stress scale’, proposed and vali-
dated by [16], and the ‘fear of Covid-19’ scale, proposed by [9], that investigates
the future career anxiety. The three scales and some respondents’ characteristics
are collected in a survey concerning high-educated students that consists of four
item-blocks. The survey, carried out in 2020, refers to 1592 students from 60 Italian
Universities, with University of Naples and University of Bologna being the most
represented. The response option for the majority of items is a 4 levels Likert-type
scale, ranging from strongly disagree to strongly agree.
The aim of the proposal is to analyse the survey results via a sequential application
of two approaches, non-parameteric and parametric, respectively. In particular, the
results from one dimension of the first scale concerning the Learning Satisfaction
Domain is synthesised into one ordinal response, defined via a joint data reduction
(JDR) approach. To investigate the obtained ordinal outcome, accounting for pos-
sible heterogeneity that provides additional information on the effects of students’
achievements, a cumulative model with proportional assumption and scale effect
[10] has been considered. Furthermore, a recent recursive partitioning method yield-
ing two trees, one for the location and one for the scaling, is also considered [12].
The method uses an algorithm which controls for the global significance level and
selects the covariates having an impact on the ordinal response. The presentation
is structured as follows: Section 2 briefly describes the generation process of the
ordinal response whereas Section 3 illustrates the ordinal data model implemented
for assessing the latent continuous variable (the DL perception). Some insights con-
cludes the proposal.

2 Defining the ordinal outcome

In order to synthesise the students perspective on DL, we apply on the DL-related
items a joint data reduction (JDR) approach. In the context of unsupervised learning,
it is common practice to apply dimension reduction (e.g. principal component analy-
sis, [7]) and then to cluster observations in the identified reduced space. The dimen-
sion reduction step is independent from the clustering step, and this may cause the
two-step approach to misidentify the underlying structure of the data. JDR methods
seek for a solution that is optimal for both steps: to this end, JDR methods consist
of an iterative procedure that alternately optimise the data reduction and the clus-
tering steps. Different JDR methods have been proposed, depending on the nature
of the available attributes: JDR have been proposed for continuous, e.g., ([2],[15]),
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for categorical [5] and for mixed-type attributes (see [13] for a review). In this pro-
posal we refer to cluster correspondence analysis (cluster CA, [14]), a JDR method
suitable for survey data. Let Z j denote an n× p j indicator matrix. That is, each row
corresponds to a respondent, and the columns represent the p j levels of agreement
for the jth item. Observed responses are coded by ones and all other elements are
zero. The block matrix Z =[Z1, . . . ,Zp] is the so-called super-indicator. The clus-
ter CA procedure defines a cluster membership variable, that is obtained so that it
minimises

minφCCA (B∗,ZK) =
∥∥∥D−1/2

z MZ−ZKGB∗′
∥∥∥2

s.t. B∗′B∗ = Id (1)

where M = In−1n1′n/n is a centering operator, B∗ = 1√
np D1/2

z B, Dz = diag(Z′Z),
B is the item weights matrix, and ZK is the indicator version for the cluster mem-
bership variable.
The parameter K, that is user-defined, is set to four so that it matches the levels of
the Likert scales. The JDR-based ordinal outcome is, therefore, the cluster member-
ship variable, with levels sorted according to group characterisation. In particular,
Figure 1 shows the items that characterise each group: each bar is the standardised
residual from independence of the cross-table between the corresponding item and
the cluster membership variable. The size of a bar is proportional to the negative
or positive group characterisation made by the category corresponding to that bar.
Since the items refer to statements describing a favorable DL perception, the groups
are ranked according to the agreement towards the most characterizing items. For
example, the cluster 2 (top-right plot in Figure 1) is characterised by strong dis-
agreement towards DL and therefore is ranked as level 1 of the response outcome.

3 The location-scale model for Learning Satisfaction Domain

The ordinal response resulting from the JDR procedure is coded so that Yi, with
i = 1, . . . ,n, represents the grade expressed by the i-th student about the synthesis
concerning the Learning Satisfaction Domain. For each i-th student, we also have xxxi,
a row vector of the matrix XXX which includes all the students’ characteristics and/or
syntheses of the psychometric scales mentioned in the introduction. We indicate
with Y ∗i the underlying (continuous) latent variable related to Learning Satisfaction
Domain such that, for any i-th subject,

τ j−1 < Y ∗i ≤ τ j ⇐⇒ Yi = j , j = 1,2, . . . ,K ,

where −∞ = τ0 < τ1 < .. . < τK =+∞ are the cut-points of Y ∗.
Assuming that p ≥ 1 covariates concerning characteristics of students or synthesis
of the psychometric scales are relevant for explaining Y ∗ by the latent regression
model, we have
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Fig. 1 Item scores for groups characterisation: deviations from independence condition

Y ∗i = xxxiβββ +σεi, i = 1,2, . . . ,n,

where σ = exp(zzziγγγ) is the relative scale, zzz is an additional vector of covariates
having impact on the scale and βββ = (β1, . . . ,βr)

′, γγγ = (γ1, . . . ,γs)
′ the covariates

coefficients. Then, the the location-scale model is:

Pr (Yi j | θθθ ,xxx) = Fε

(
τ j− xxxiβββ

exp(zzziγγγ)

)
.

Any strictly increasing distribution function may be conceived for Fε(.).
The model contains two terms that specify the impact of covariates, the location
term τ j− xxxiβββ and the variance or scaling term exp(zzziγγγ). If xxx and zzz are distinct the
interpretation of the xxx-covariates is the same as in the basic cumulative model with
proportional assumption [10]. An alternative way to model heterogeneity, which
has some advantages, specifies that covariates modify the cut-points. It has been
discussed by [11].
In the proposal we concentrate our attention on the McCullagh’s [10] location-scale
model after having testing the presence of heterogeneity in the ordinal variable. The
selection of relevant covariates for both components will be obtained by a recursive
partitioning; a modeling strategy yielding a hybrid tree presented in [12].
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Preliminary results show that students’ age, resulted to be negative to Covid-19,
studying experience, future employment, perception of the risk of infection, and
social distancing affect the location of the Learning Satisfaction Domain whereas
the fear of the risk of contagion impacts the scale of Y ∗. Further analyses related to
anxiety will be also discussed taking into account the connection between student
stress and future career anxiety detected in the developments of a close research
topic [6].
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