
Covariance estimation for matrix-valued data has received an increasing interest in 
applications including neuroscience and environmental studies. Unlike previous 
works that rely heavily on matrix normal distribution assumption and the 
requirement of fixed matrix size, we propose a class of distribution-free 
regularized covariance estimation methods for high-dimensional matrix data under 
a separability condition and a bandable covariance structure. Under these 
conditions, the original covariance matrix is decomposed into a Kronecker product 
of two bandable small covariance matrices representing the variability over row 
and column directions. We formulate a unified framework for estimating the 
banded and tapering covariance, and introduce an efficient algorithm based on rank 
one unconstrained Kronecker product approximation. The convergence rates of the 
proposed estimators are studied and compared to the ones for the usual vector-
valued data. We further introduce a class of robust covariance estimators and 
provide theoretical guarantees to deal with the potential heavy-tailed data. We 
demonstrate the superior finite-sample performance of our methods using 
simulations and real applications.  
	


