
Abstract
Manifold-valued data naturally arises in medical imaging. In cognitive neuroscience, for
instance, brain connectomics bases the analysis of coactivation patterns between different brain
regions on the analysis of the correlations of their functional Magnetic Resonance Imaging
(fMRI) time series – an object thus constrained by construction to belong to the manifold of
symmetric positive definite matrices.

One of the challenges that naturally arises in these studies consists of finding a
lower-dimensional subspace for representing such manifold-valued and typically
high-dimensional data. Traditional techniques, like principal component analysis, are ill-adapted
to tackle non-Euclidean spaces and may fail to achieve a lower-dimensional representation of
the data – thus potentially pointing to the absence of lower-dimensional representation of the
data. However, these techniques are restricted in that: (i) they do not leverage the assumption
that the connectomes belong on a pre-specified manifold, therefore discarding information; (ii)
they can only fit a linear subspace to the data.

For this talk, we are interested in learning potentially highly curved submanifolds of
manifold-valued data. Motivated by the brain connectomes example, we investigate a latent
variable generative model, which has the added benefit of providing us with uncertainty
estimates – a crucial quantity in the medical applications we are considering. While latent
variable models have been proposed to learn linear and nonlinear spaces for Euclidean data, or
geodesic subspaces for manifold data, fewer intrinsic latent variable models exist to learn
nongeodesic subspaces for manifold data. We formulate a Riemannian variational autoencoder
with an intrinsic generative model of manifold-valued data. We evaluate its performances on
synthetic and real datasets by introducing the formalism of weighted Riemannian submanifolds.


