
Page 1 of 5 

Nan Li and Hao Helen Zhang 

Sparse Learning with Non-convex Penalty in Multi-classification

Nan Li1; Hao Helen Zhang2 

1 Department of Epidemiology and Cancer Control, St. Jude Children’s Research 
Hospital, Memphis, Tennessee, U.S.A. 
2 Department of Mathematics, University of Arizona, Tucson, Arizona, U.S.A. 

Abstract:  
Multi-classification is commonly encountered in data science practice, and it has broad 
applications in many areas such as biology, medicine, and engineering. In multiclass 
problems, variable selection is much more challenging than in binary classification or 
regression problems. In addition to estimating multiple discriminant functions for separating 
different classes, we need to decide which variables are important for each individual 
discriminant function as well as for the whole set of functions. In this paper, we address the 
multi-classification variable selection problem by proposing a new form of penalty, 
supSCAD, which first groups all the coefficients of the same variable associated with all the 
discriminant functions altogether and then imposes the SCAD penalty on the supnorm of 
each group. We apply the new penalty to both soft and hard classification and develop two 
new procedures: the supSCAD multinomial logistic regression and the supSCAD multi-
category support vector machine. Our theoretical results show that, with a proper choice of 
the tuning parameter, the supSCAD multinomial logistic regression can identify the 
underlying sparse model consistently and enjoys oracle properties even when the dimension 
of predictors goes to infinity. Based on the local linear and quadratic approximation to the 
non-concave SCAD and nonlinear multinomial log-likelihood function, we show that the new 
procedures can be implemented efficiently by solving a series of linear or quadratic 
programming problems. Performance of the new methods is illustrated by simulation studies 
and real data analysis of the Small Round Blue Cell Tumors and the Semeion Handwritten 
Digit data sets. 
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1. Introduction:
Multiclass classification has broad applications in practice such as handwritten zip code digit
recognition and cancer classification based on DNA microarray data (Hastie et al., 2009).
Usually, a large number of variables are collected but some of them are uninformative in
prediction. Therefore, it is essential to identify important variables in order to increase both
classification accuracy and model interpretability.

This paper is motivated by precision medicine in cancer research where one goal is to 
extract important information from omics data, such as genomics, transcriptomics, or 
proteomics and classify tumors into different cancer subtypes in order to provide optimal 
treatment. Since the number of genes is usually much larger than the sample size, it is 
critical to select “signature” genes which can characterize cancer subtypes and have strong 
prediction power. This work is motivated by the classification of small round blue cell tumors 
in childhood (Khan et al., 2001) using a small set of important genes. We propose and study 
a new class of learning methods for joint multiclass classification and variable selection.  
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Based on the composite of supnorm and SCAD function, we propose a new form of penalty 
called the supSCAD penalty to achieve group sparsity for multiclass problems. What makes 
the supSCAD penalty attractive is its ability to remove noise covariates, i.e., those covariates 
not contributing to discriminating different classes. One motivating example is the multi-type 
cancer classification using genes. Typically, only a small subset of “important” genes are 
needed to classify cancer into different subtypes, and the rest of genes are either redundant 
or non-informative. The supSCAD penalty is designed to enforce group-wise parsimony in all 
the coefficients associated with one variable without directly penalizing individual 
coefficients, and therefore the estimated coefficients are less biased than other methods 
such as the group LASSO. The new penalty demonstrates competitive performance for both 
multinomial logistics regression and multi-category support vector machine, and enjoys nice 
theoretical properties, even if the data dimension diverges. An efficient algorithm is 
developed by combining the difference convex algorithm (DCA; Wu and Liu (2009)) and the 
local linear approximation (Zou and Li, 2008). 
 
2. Methodology:  

Consider a K-class problem with the input vector 𝑥 ∈ 𝑅𝑑 and the output 𝑦 ∈ {1,… , 𝐾}. For 
linear classification rules, there are (𝑑 +  1) coefficients associated with each decision 
function, including the intercept term. Altogether, all the coefficients associated with the K 
decision functions can be expressed as a 𝐾 × (𝑑 +  1) coefficient matrix. The jth column of 

the matrix, expressed as 𝛽(𝑗)  =  (𝛽1𝑗, … , 𝛽𝐾𝑗 )
𝑇 , consists of K coefficients associated with 𝑥𝑗 

, where 𝑗 = 0, 1, . . . , 𝑑 and 𝑥0 is the intercept. The kth row 𝛽𝑘  =  (𝛽𝑘0, 𝛽𝑘1, … ,  𝛽𝑘𝑑  ) consists of 

(𝑑 +  1) coefficients characterizing the decision function 𝑓𝑘, where 𝑘 =  1, . . . , 𝐾. For the 
variable selection purpose, we treat the elements in 𝛽(𝑗) as a group. Define the supnorm of 

𝛽(𝑗) as ‖𝛽(𝑗)‖∞
= max
𝑘=1,…,𝐾

|𝛽𝑘𝑗|, where the importance of 𝑥𝑗 is directly controlled by its largest 

absolute element. If ‖𝛽(𝑗)‖∞
= 0, then all the K coefficients associated with 𝑥𝑗 are set to zero. 

Otherwise, if 𝑥𝑗 is important with a positive supnorm, then no penalty is imposed on the 

remaining elements. To borrow desired sparsity and oracle property of SCAD penalty (Fan 
and Li, 2001), we propose supSCAD penalty with the following form 
 

𝐽𝜆(‖𝜁‖∞) =

{
 
 

 
 𝜆
‖𝜁‖∞                                          𝑖𝑓 ‖𝜁‖∞ ≤ 𝜆

−
(‖𝜁‖∞

2 −2𝑎𝜆‖𝜁‖∞+𝜆
2)

2(𝑎−1)
          𝑖𝑓 𝜆 < ‖𝜁‖∞ ≤ 𝑎𝜆

(𝑎+1)𝜆2

2
                                     𝑖𝑓 ‖𝜁‖∞ > 𝑎𝜆 

 , where 

 𝜻 = (𝜁1, 𝜁2, … , 𝜁𝐾)
𝑇, ‖𝜁‖∞ = max

𝑖=1,…,𝐾
|𝜁𝑖|, 𝑎 > 2, and 𝜆 > 0 is the tuning parameter. 

 
Applied supSCAD to soft classification method, we have supSCAD multinomial logistic 
regression as 
 

min
𝛽
−{{∑[∑ 𝐼(𝑦𝑖 = 𝑘)𝛽𝑘

𝑇

𝐾

𝑘=1

𝑛

𝑖=1

𝑥𝑖 − log(∑ exp(𝛽𝑙
𝑇𝑥𝑖)

𝐾

𝑘=1

)} + 𝑛∑𝐽𝜆 (‖𝛽(𝑗)‖∞)   

𝑑

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝑘𝑗 = 0,   𝑗 = 0,1, … , 𝑑.

𝐾

𝑘=1

 

 
We show that supSCAD multinomial logistic regression estimator is root-(𝑛 𝑑𝑛⁄ ) consistent, 

where the subscript in 𝑑𝑛 is used to emphasize its dependence on sample size 𝑛. The 
computation can be decomposed into two loops. The outer loop approximates the negative 
multinomial log-likelihood by its second order Taylor expression. Under the approximated 
log-likelihood, the inner loop solves the non-convex supSCAD function by DCA (Le Thi Hoai 
and Tao, 1997) or LLA (Zou and Li, 2008) techniques. 
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Applied supSCAD to hard classification method, we have supSCAD multi-category support 
vector machine (supSCAD MSVM) with the following form 
  
 

min
𝛽0,𝛽

1

𝑛
∑∑𝐼(𝑦𝑖 ≠ 𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

[𝛽𝑘0 + 𝛽𝑘
𝑇𝑥𝑖 + 1]+ +∑𝐽𝜆

𝑑

𝑗=1

(‖𝛽(𝑗)‖∞
) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝑘0 = 0, 𝑎𝑛𝑑 ∑𝛽𝑘𝑗

𝐾

𝑘=1

 = 0, 𝑗 = 1,… , 𝑑.
𝐾

𝑘=1
 

Additionally, we have supSCAD multi-category proximal support vector machine (supSCAD 
MPSVM) as 

min
𝛽0,𝛽

1

𝑛
∑∑𝐼(𝑦𝑖 ≠ 𝑘)

𝐾

𝑘=1

𝑛

𝑖=1
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 = 0, 𝑗 = 1,… , 𝑑.
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In the same scheme of applying DCA or LLA techniques, supSCAD MSVM/MPSVM can be 
solved through a series of linear or quadratic programming problems. 
 
 
3. Result:  
We evaluate our proposed supSCAD estimator in terms of variable selection, class 
prediction, and probability estimation, under three simulation experiments and two real 
examples. The three simulation experiment settings are: (1) a four-class linear classification 
example with two “strong” important variables and two “weak” important variables for all the 
classes; (2) a four-class linear classification example with different important variables 
across classes; (3) a three-class high-dimensional example with two important variables for 
all the classes and 198 noise variables. 
 
For comparison, we consider four soft classifiers and six hard classifiers. Four soft 
classification methods are L1 logistic regression (L1 LR), group-L1 logistic regression 
(GroupL1 LR), supSCAD logistic regression (supSCAD LR), and the composite MCP logistic 
regression (comp-MCP LR). Six hard classification methods are the standard MSVM (L2 
MSVM), L1 MSVM (L1 MSVM), supSCAD MSVM/MPSVM, and the composite MCP 
MSVM/MPSVM. All simulations are conducted using Matlab (MATLAB, 2014) and Tomlab 
(Holmström et al., 2010), an optimization environment within Matlab. 
 
For each simulation experiment, we generate a training data set and a test data set from the 
same distribution. We use the training data to train the classifiers and select the best tuning 
parameter from a series of λ values, and use the test data to evaluate performance of the 
estimated classifiers. A total of 100 simulations are conducted under each setting. Every 
classifier is evaluated in terms of its prediction and variable selection accuracy. For a soft 
classifier, we also examine its performance in estimating the conditional class probabilities. 
 
Overall supSCAD LR achieves best performance in all three experiments, including the 
second experiment which has different important variables across classes and violates the 
supSCAD underlying assumption. The supSCAD focuses on the group-level selection and it 
does not imposes penalty at the individual level. By design, this second example has 
important variables with zero coefficients for certain classes, which favours the bi-level 
selection procedures such as the comp-MCP most. However, supSCAD LR still gives 
satisfactory results. 
 

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000424



Page 4 of 5 
 

In real data analysis, Small Round Blue Cell Tumors is a 4-class problem, consisting 63 
training samples and 20 independent testing samples. After filtering and standardizing, we 
rank the genes by their marginal separation power in the training set. We then select the top 
100 and bottom 100 genes as the prediction covariates to feed to various classification 
methods. Leave-one-out cross validation is used to select the optimal tuning parameter, and 
then the trained models are used to predict the class labels for 20 test samples. Results are 
summarized and compared in the first row of Table 1. It is observed that the LR-based 
methods have overall better classification accuracy than the SVM-based methods for this 
data set, and the L1 LR, supSCAD LR, and the comp-MCP LR methods all have the test 
error zero. 
 
Semeion Handwritten Digit Data consists of 1593 handwritten digits (0–9), each of which 
was scanned and stretched in a square box 16 × 16 in a gray scale of 256 values (i.e. 256 
attributes). Then each pixel of each image was scaled into a Boolean (1/0) value of a fixed 
threshold. The whole data set is roughly equally distributed among the 10 classes. We split 
the data into six groups with roughly equal size and class distribution, with one group used 
for testing and the remaining five groups used for training. We perform 5-fold CV to select 
the best tuning parameter. The classification results are the second row of Table 1, and the 
supSCAD LR gives the lowest classification error 0.11. 
 
Table1: Classification results for two real datasets. 

Method L1 LR GroupL1 LR supSCAD LR comp-MCP LR L2 MSVM 

SRBCT 0 0.05 0 0 0 

Semeion 0.37 0.35 0.11 0.12 0.20 

Method L1 MSVM supSCAD MSVM supSCAD MPSVM comp-MCP MSVM comp-MCP MPSVM 

SRBCT 0.05 0.10 0.05 0.05 0.05 

Semeion 0.27 0.25 0.19 0.27 0.19 

 
 
4. Discussion and Conclusion: 
This newly proposed penalty, supSCAD, enhances sparse learning in multi-classification by 
retaining the merits from both SCAD and supnorm penalties. It can incorporate the natural 
group effects of the coefficients associated with the same covariate to construct more 
parsimonious classifiers with desired oracle properties. 
 
To tackle the numerical challenge of non-differentiability and non-convexity of the objective 
function, we have proposed an efficient iterative algorithm based on the LLA or DCA. For 
multiclass probability estimation, supSCAD is applied to multinomial logistic regression to 
conduct variable selection and conditional probability estimation simultaneously. An 
optimization procedure involving quadratic approximation to the multinomial loglikelihood 
function and nested DCA/LLA for the supSCAD penalty is developed and evaluated by 
numeric experiments. We further extend the penalty to the multi-category SVM framework 
and develop supSCAD MSVM/MPSVM, which demonstrate competitive performance 
compared to other regularized MSVM in simulated and real data examples. 
 
The major underlying assumption of the supSCAD penalty is that the covariates across 
different classes can be naturally grouped for each predictor. Though this assumption may 
not hold for very complex problems, we find that it can still achieve reasonably good results 
even when the assumption is violated. For further improvement, our supSCAD penalty can 
be easily extended to incorporate within-group sparsity structure by imposing additional 
penalty on individual coefficients, such as LASSO or adaptive LASSO penalty, e.g., 

∑ 𝐽𝜆(‖𝛽(𝑗)‖∞
)𝑑

𝑗=1 + 𝜆𝑐 ∑ ∑ |𝛽𝑘𝑗|
𝑑
𝑗=1

𝐾
𝑘=1 . However, choosing the extra tuning parameter 𝜆𝑐 may 

cause additional computation cost. Its theoretical and computational properties are 
interesting for investigation in future work. 
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