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Abstract: 

Standard methods usually employed to estimate the parameters of extreme value distributions 
use only a small part of the observed values. When block maxima values are considered, 
many data are discarded. This wasteful of information is more pronounced when we select 
the block maxima for two sets of correlated values. The use of copulas allows to model the 
structure of dependence between the observed sets. In addition, copulas define multivariate 
distributions with the desired univariate marginals in each situation. There are relationships 
between the parameters of different distributions and the parameters of the distribution of 
block maxima. Also, there are relationships between the Archimedean copula’s parameter and 
Gumbel extreme value copula’s parameter. The new Bayesian estimation methods are based 
on them. Baseline distribution method (BDM) determines the estimations of the base copula’s 
parameters as well as of the univariate baseline distributions’ parameters with all the data. 
Improved baseline distribution method (IBDM) aims to give more importance to the block 
maxima data than to the values of the base copula. It is performed by applying BDM to obtain 
a highly informative prior distribution for the parameters of distribution of extreme value given 
the relationship with baseline distribution’s parameters. We compare empirically, through a 
broad simulation study, these new methods with Standard Bayesian analysis for uninformative 
prior distributions (Metropolis-Hastings method, MHM). Considering Joe’s Archimedean 
copula with univariate marginal Normal distributions. Also, the Joe copula leading to extreme 
Gumbel copula and the Normal distribution leading to an extreme Gumbel distribution. When 
the block size is small, the results show that IBDM has intermediate behavior between MHM 
and BDM. When the block size is large enough, IBDM shows better behavior than BDM that 
remains stable.  
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1. Introduction:

Extreme Value Theory (EVT) is used to model and predict distributions that appear when we 
study extreme events. EVT is employed in several scientific fields as rare events appear in 
temperatures, precipitations, finances, … The usual data fitting techniques work well in the 
central area of the distribution, but poorly in the tail area due to the low number of extreme 
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observations. In EVT, there are two main approaches, block maxima method (BM) and peaks-
over-threshold method (POT). The difference between them is based on the way each model 
classifies which observations are considered extreme events. For BM method, data are 
divided into blocks of equal size and the maximum is taken for each block. The challenge of 
this method lies in deciding the size of the blocks when they are not obvious. Meanwhile, in 
the case of the POT method, deciding the threshold value might be difficult. However, a 
common feature is that both strategies dispense with many available data. 
Given a sequence of independent and identically distributed (i.i.d.) random variables 𝑌!, … , 𝑌" 
with common distribution function F (baseline distribution), and given a fixed 𝑘	 ∈ ℕ (block 
size), we define the block maxima as 

𝑋# = max
(#%!)'()*#'

𝑌) , 𝑖 = 1,2, … , 𝑛 

Therefore, the whole set of observations, 𝑚	 = 	𝑘	 × 𝑛, are divided into 𝑛 blocks of size 𝑘. Also, 
according to the Gnedenko (1943) and Fisher and Tippet (1928) theorems, the asymptotic 
distribution of block maxima of i.i.d. random variables can be approximated by the generalized 
extreme values (GEV) distribution, with distribution function  

GEV(x; ξ, µ, σ) = exp >−@1 + 𝜉
𝑥 − 𝜇
𝜎

F
%!/,

G 

with ξ, µ ∈ ℝ, σ > 	0, and  1 + 𝜉 -%.
/
	> 	0.  

In addition, when ξ = 	0 , the right-hand side of previous equation is interpreted as	

G(x; µ, σ) = exp >−	𝑒𝑥𝑝	 M−
𝑥 − 𝜇
𝜎

NG 

and it is called Gumbel distribution with parameters µ (location) and σ (scale).  
Definition 1. We say that the distribution function F is in the domain of attraction of Gumbel 
distribution when there exist sequences {𝑎'} and {𝑏'}, with 𝑎' > 0, 𝑏' ∈ ℝ such that 

𝑙𝑖𝑚
'→∞

𝐹' (𝑎'𝑥 + 𝑏') = G(𝑥), x ∈ ℝ 
The domain of attraction of a distribution allows us to relate the parameters of different 
baseline distributions to the limit Gumbel distribution’s parameters. Martin et al. (2020) shows 
the relationships for different baseline distributions. In particular, for the Normal distribution 
with mean µ1 and standard deviation σ1, the relationships are 

U
𝜇 = 𝜇1 + 𝜎1 V(2  𝑙𝑛  𝑘)!/2 −

𝑙𝑛 𝑙𝑛 𝑘     +   𝑙𝑛 4𝜋  
2(2  𝑙𝑛  𝑘)!/2

Z	

σ = σ1(2  𝑙𝑛  𝑘)%!/2
 

 
Copula theory is increasingly used in multivariate models of extreme values. A copula 𝐶  is a 
multivariate distribution function with uniform marginal univariates. However, according to the 
Sklar theorem (1959), copulas allow to obtain multivariate distributions with desired marginal 
univariates. An important feature of copulas is that they reflect the dependency structure 
between observations regardless of marginal distributions. Nelsen (2007) showed many 
different families of copulas, including Archimedean copulas and Extreme Value copulas 
(EVC).  
 
Definition 2. According to Genest and Mackay (1996), we say that a 2-dimensional copula 𝐶 
is Archimedean with generator ϕ: [0,1] → [0,1] such that ϕ(1) = 0, ϕ3(𝑢) < 0 and ϕ33(𝑢) > 0 if  

𝐶(𝑢, 𝑣) = d𝜙
%!f𝜙	(𝑢) + 𝜙	(𝑣)g 𝑖𝑓					𝜙	(𝑢) + 𝜙(𝑣) ≤ 	𝜙	(0)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Besides, Joe (1997) defined a 2-dimensional extreme value copula 𝐶∗  as the copula that 
satisfies  

𝐶∗f𝑢' , 𝑣'g = 𝐶∗(𝑢, 𝑣)' , ∀𝑘	 > 	0 
In particular, the 2-dimensional Gumbel copula is an extreme value copula, and it is defined 
by its distribution function  

𝐶5(𝑢, 𝑣; θ) = 𝑒𝑥𝑝 M−r(− 𝑙𝑛 𝑢)6 	+ 	(− 𝑙𝑛 𝑣)6s!/7N , 𝑢, 𝑣 ∈ [0,1], θ ≥ 1	 
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Also, notice that the Gumbel copula with parameter 𝜃 = 1 represents independence between 
observations.  
The use of copula theory in multivariate EVT is due to the following relationship. Given the 
sequences of 2 i.i.d. random variables (𝑌!!, 𝑌2!), … , (𝑌!", 𝑌2"), the joint limit distribution of 
block maxima (𝑋!# , 𝑋2#), 𝑖 = 1,… , 𝑛 is such that  

𝐺(𝑥!, 𝑥2) = 𝐶∗f𝐺!(𝑥!), 𝐺2(𝑥2)g 
where 𝐶∗ is an extreme value copula, and 𝐺!, 𝐺2 are univariate extreme value distributions, 
that is, GEV distributions. As a result of this connection with EVT, the concept of domain of 
attraction also appears in copula theory. Hence, multivariate distributions of extreme values 
can be defined through extreme value copulas. 
Definition 3. We say that the copula C is in the domain of attraction of an extreme value 
copula 𝐶∗ when  

𝑙𝑖𝑚
'→∞

𝐶' f𝑢!/' , 𝑣!/'g = 𝐶∗(𝑢, 𝑣), 𝑢, 𝑣 ∈ [0,1] 
In addition, there is a relationship between the Archimedean copula’s parameters and the 
extreme value Gumbel copula’s parameter. The following result allows us to obtain that 
relationship.  
Proposition 1. If C is an Archimedean copula with generator 𝜙6 and there exists 

lim
8→9

−𝜔
𝜙6
3 (1 − 𝜔)

𝜙6(1 − 𝜔)
= 𝜃! ∈ [1,+∞) 

Then C is in the domain of attraction of an extreme value Gumbel copula with parameter 𝜃!.  
 
In particular, we will consider two-dimensional Joe copula with parameter θ	 ≥ 1 and generator 
 ϕ7(ω) = − 𝑙𝑛f1 − (1 − ω)7g, whose distribution function is  

𝐶:(𝑢, 𝑣; 	𝜃) = 1 − r(1 − 𝑢)6 +	(1 − 𝑣)6 − (1 − 𝑢)6(1 − 𝑣)6s
!
6 , 𝑢, 𝑣 ∈ [0,1] 

This copula is in the domain of attraction of an extreme value Gumbel copula with parameter 
𝜃.  
In general, given a copula 𝐶 with marginal univariates 𝐹!, 𝐹2, 𝐶	is in the domain of attraction of 
an extreme value copula 𝐶∗  with marginal distributions 𝐺!, 𝐺2  which are extreme value 
distributions. Also, 𝐹!, 𝐹2 are in the domain of attraction of 𝐺!, 𝐺2, respectively.  
 
2. Methodology:  
 
The inference methods used for extreme value distributions require conditions on the shape 
parameter 𝜉, because of the asymptotic theory on which they are based. This problem is saved 
with a Bayesian approach that provides the advantage of including additional information 
through the chosen prior distribution. 
New methods to estimate Gumbel distribution’s parameters as block maxima distribution are 
shown in Martin et al. (2020). These methods are compared to the Metropolis-Hastings 
method (MHM) that uses non-informative prior distributions. The proposed methods are 
Baseline Distribution method (BDM) and Improved Baseline Distribution method (IBDM). BDM 
estimates the parameters of the baseline distribution, and IBDM uses highly informative prior 
distributions to estimate the parameters of the Gumbel distribution of block maxima. Also, 
IBDM uses the relationship between the parameters of baseline distribution and the 
parameters of Gumbel distribution of block maxima to construct the prior distribution.  All 
methods are based on the MCMC techniques, concretely a Metropolis-Hastings (MH) 
algorithm.  
IBDM is a method that gives more weight to block maxima data than to baseline data. It is 
quite similar to a BDM when the block size is large, therefore there is little block maxima data. 
However, when the block size becomes smaller (more block maxima data), IBDM approaches 
MHM.  
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This work presents two-dimensional cases of the BDM and IBDM. Given Proposition 1, when 
the base copula is Archimedean, there exists a relationship between the parameters of the 
base copula with the Gumbel extreme value copula’s parameter.  
In MHM and BDM, to estimate the parameters of the baseline and Gumbel marginal 
distributions, the prior distributions proposed in Martin et al. (2020) are considered. In addition, 
an 𝑈(1,1000) is settled for the parameters of the base copula and Gumbel copula.  
Improved Baseline Distribution Method: Prior distributions are considered for Gumbel 
copula’s parameters and Gumbel marginal distributions’ parameters. Then, we take 
advantage of the relationships between parameters of baseline distributions with extreme 
value distributions’ parameters. Prior distributions of the parameters are obtained by applying 
the transformations to posterior distribution given by BDM.  
 
3. Result:  
 
Joe copula’s parameter 𝜃 = 2 is considered to be a base copula with marginals 𝑌! ∼ 𝑁(0,1) 
and 𝑌2 ∼ 𝑁(0, 𝜎), with 𝜎 = 2%!, 2. Proposition 1 indicates that Joe Archimedean copula is in 
the domain of attraction of the Gumbel extreme value copula with parameter 𝜃! = 2 . In 
addition, Normal distributions are in the domain of attraction of the Gumbel distribution of block 
maxima.  
We made a simulation study for the two cases considered. For each case, we generated 𝑚#) =
𝑘) 	× 	𝑛# values of the base copula (with the marginals indicated), where 

• 𝑘) is the block size, 𝑘) = 10) , 𝑗 = 1,2; and 
• 𝑛# is the number of block maxima, 𝑛# = 2# , 𝑖 = 3,4, … ,7. 

Besides, each sequence is replicated 𝑀 = 100 times.  
MHM generally provides high skewed estimations for the posterior distributions than IBDM. 
Figure 1 shows that for the Gumbel copula parameter and the scale parameters of Gumbel 
marginal, MHM presents a right skew compared to IBDM, when the number of block maxima 
is small. However, when there are many block maxima values, MHM and IBDM provide highly 
concentrated estimations. In addition, IBDM has less variability than MHM (Figure 2). Both 
methods present similar estimations for the location parameters of Gumbel distribution.  

 
Figure 1. Probability density functions for M estimations of the block maxima parameters 𝜃! 
(top left), µ (centre) and σ (right), obtained for the methods MHM and IBDM, with 𝑘	 = 	100 
and 𝑛	 = 	8, from marginals 𝑌! ∼ 𝑁(0,1) and 𝑌2 ∼ 𝑁(0,2). 
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Figure 2. Probability density functions for M estimations of the block maxima parameters 𝜃! 
(top left), 𝜇 (centre) and 𝜎 (right), obtained for the methods MHM and IBDM, with 𝑘	 = 	100 
and 𝑛	 = 	64, from marginals 𝑌! ∼ 𝑁(0,1) and 𝑌2 ∼ 𝑁(0,2). 
 
To compute measures of error in order to evaluate the quality of estimations, we compared 
estimated distribution functions (𝐶∗) with real ones (𝐶') through their mean absolute distance 
(AD). As analytical computation is not possible, we made a Monte-Carlo computation 
employing sample size 𝑠 = 10;. Then, 

𝐴𝐷) =	
1
𝑠
	�|𝐶∗f𝑥!# , 𝑥2#; 	𝑣<�g − 𝐶'(𝑥!# , 𝑥2#; 	𝑣)|	
=

#>!

 

with 𝑗 = 1,… ,𝑀 , where 𝑀  is the number of samples. Also, 𝐶∗(𝑥!# , 𝑥2#; 	𝑣�)  denotes the 
estimated Joe copula with Normal marginal distributions, for the baseline parameter 𝑣�. And, 
for 𝑘  big enough, 𝐶∗(𝑥!# , 𝑥2#; 	𝑣�)  is estimated Gumbel copula, with Gumbel marginal 
distributions, where 𝑣� denotes block maxima parameters. Then, we employed Mean Absolute 
Error (MAE), defined as 

𝑀𝐴𝐸 =	
1
𝑀
�𝐴𝐷)

?

)>!

 

Figure 3 shows MAE for the three methods. When block size is small (top panels), BDM is the 
best method. However, for bigger values of k (bottom panels), IBDM provide better results 
than BDM. This method provides more uniform error values for different values of number of 
block maxima (n). When n is big enough, MHM and IBDM offer similar values. Also, when the 
block size is small, IBDM provides error measures which are intermediate between MHM and 
BDM.  
 
4. Discussion and Conclusion: 
 
1. In EVT, the estimation of the parameters of the distribution is one of the most common 
problems, because data are usually scarce. This is more remarkable when we have 
multivariate situations. In this work, we considered the case when block maxima bivariate 
distribution is a Gumbel copula, and we developed two Bayesian methods, BDM and IBDM, 
to estimate the posterior distribution of the parameters. 
2. BDM and IBDM methods make use of all the available data from the base copula, not only 
block maxima values.  
3. We obtained that posterior distributions of the parameters for IBDM are more concentrated 
and less skewed than the ones offered through MHM.  
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4. In general, the results obtained show that BDM and IBDM offer lower measures of error. 
MHM shows the worst results, especially when extreme data are scarce.  
5. When block size gets bigger values, IBDM is the best method, while BDM provides more 
uniform results for different values of the number of block maxima.  
 

 
Figure 3. Mean absolute error (MAE) for the three methods MHM (red), BDM (green) and 
IBDM (blue) with 𝑘	 =  10 (top), 100 (bottom), and different values of n, from marginal 
distributions 𝑌! ∼ 𝑁(0,1) and 𝑌2 ∼ 𝑁(0,1/2) (left) and 𝑌! ∼ 𝑁(0,1) and 𝑌2 ∼ 𝑁(0,2) (right). 
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