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Abstract

This is a description of modelling spatial binary data that uses ex-
isting methodology in a unique way. Firstly, a model for a realization
of a binary random field is considered where the correlations satisfy
the Fréchet–Hoeffding bounds. The binary variables are related to la-
tent variables that have a Matérn spatial correlation via a multivariate
probit model. Thus, both the marginal means of the binary variables
and their spatial distances contribute to their correlations. Secondly,
a profile likelihood approach to maximizing the likelihood is carried
out as a full likelihood approach is computationally not feasible. The
model is fitted to TB infection data in cattle herds. Minimum and
maximum values of the binary correlations are estimated and associ-
ated Euclidean distances recorded.
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1 Introduction

Consider a multivariate binary response vector Y = (Y1, . . . , Yn) with spec-
ified marginal means µi = E(Yi), (i = 1, . . . , n). For binary data where ob-
servations are spatially correlated, a simple parametric form for the corre-
lation structure, such as is used for Gaussian random fields, is not readily
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available. Limits to Pearson correlations between Bernoulli random vari-
ables are well known. Valid bivariate correlations rij satisfy the well known
Fréchet–Hoeffding bound (McDonald, 1993)

rij ≤ min{ψi/ψj, ψj/ψi} = r̄ij,

where ψi = (µi/(1− µi))1/2.
Several authors have addressed the problem of modelling correlated binary
variables but did not take the above constraint into account. The two main
approaches used are conditional models and generalized estimating equations
(GEE). A review may be found in De Oliveira (2020). Here we consider a
likelihood approach via multivariate probit models. A multivariate probit
model was proposed by Chaganty and Joe (2004) for samples of longitudinal
binary data but they have not been used in the context of spatial binary data
where the observed response is a single n-dimensional vector.

2 A spatial model

Let {Y (s) : s ε D} be a binary random field where for any s ε D, Y (s) takes
two values, coded as 0 and 1. Let {Z(s) : s ε D} be an unobserved Gaussian
random field with mean function ν(s) and covariance function C(s, u) =
σ2ρ(s, u) where ρ(s, u) is a correlation function. We let Y (s) = I(Z(s) > 0)
and without loss of generality set σ2 = 1 (De Oliveira, 2020). Let ν(s) =
Φ−1(µ(s)), where µ(s) = E(Y (s)). We assume the mean response µ(s) is
associated with the measurements of explanatory variables X through a link
function Φ−1(µ) = Xβ.
Consider a realisation of this model, Y = (Y1, . . . , Yn) where Yi = I(Zi−vi ≥
−vi = −βTxi), i = 1, . . . , n, D ⊂ R2 and denote the Euclidean distance
between observations Yi and Yj by d(i, j). There is a 1:1 correspondence
between the correlations of the Z’s and the correlations of the Y’s.

corr(Yi, Yj) = rij =
Φ2(vi, vj, ρij)− Φ(vi)Φ(vj)

[Φ(vi)(1− Φ(vi))Φ(vj)(1− Φ(vj))]1/2
(1)

where Φ2(ω1, ω2; ρij) and Φ(ω) denote the standardized bivariate normal with
correlation Σ = (ρij)n×n and the univariate standard normal distribution
functions respectively. The latent correlation is assumed to have a form such
as ρ(s, u) = exp(−d/γ) where d = ‖s − u‖, then ρij = exp(−d(i, j)/γ) or
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more generally we can consider a Matérn latent correlation with scale φ and
smoothness κ parameters. Thus, a valid spatial correlation function for the
binary variables is established. We can then compute the log likelihood of the
data Pr(Y = y;X, β,Σ), yε{0, 1}n, based on the multivariate probit model,
since Yi = I(Zi−vi ≤ vi = β′xi), i = 1, . . . , n, as in Chaganty and Joe (2004).
The likelihood is given by∫

A(y1)
. . .
∫
A(yn)

(
1

2π

)n/2
|Σ|−1/2 exp{(z −Xβ)TΣ−1(z −Xβ)}dz

.
A(yi) = (0,∞], if yi = 1

= (−∞, 0), if yi = 0
i = 1, . . . , n.

The integrand has a standard multivariate normal distribution with correla-
tion matrix Σ.
The negative log-likelihood can be minimized for the unknown parameters,
φ, κ and β. The Hessian can also be obtained and inverted to get standard
errors of the parameter estimates. As the full likelihood may not be very
smooth in the parameters, the likelihood is maximized in two stages. Let θ1
denote the spatial parameter κ and let θ2 denote φ and the β parameters and
let θ = (θ1, θ2). Given L(θ1, θ2) we compute the profile likelihood of θ1 as

L(θ1) = max
θ2

L(θ1, θ2).

The maximum with respect to θ1, θ̂1 can then be found. We then have pre-
dicted values of our binary variables Yi. Equation (1) can then be used to
estimate the corr(Yi, Yj).
θ1 is related to the correlation of the latent variables but not to their mean
ν(s). Therefore θ1 and β are orthogonal and their maximum likelihood esti-
mates and associated standard errors are asymptotically independent (Cox
and Reid, 1987). Therefore, θ1 was set equal to θ̂1, and an estimated like-
lihood of θ2 is Le(θ2) = L(θ̂1, θ2) and asymptotically it can be treated as
a standard likelihood to obtain estimates of the standard errors of the φ, β
parameters (Pawitan, 2001, Section 10.7).
The Genz-Bretz randomized quasi-Monte-Carlo procedure Genz and Bretz
(2009) was used to calculate multivariate normal probabilities using the
mvtnorm library in R.
Genz uses a sequence of three transformations to transform the original in-
tegral into an integral over a unit hypercube, the rectangle probability can
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then be successfully evaluated via importance sampling based on a (d-1) -
variate standard uniform random sample. Genz later improved on this with
the use of a randomized quasi Monte Carlo method with the use of antithetic
variates.
Asymptotic and small-sample efficiency calculations by Genz show that this
method is nearly as efficient as maximum likelihood for fully specified mul-
tivariate normal copula-based models. In addition, Nikoloulopoulos (2013)
showed this method is highly efficient for a high dimensional discrete response
with aggregated data up to dimension d=225.

3 Example: Cattle data

In Ireland and the UK, bovine bTB infects cattle and wildlife badgers (Meles
meles linnaeus) and badgers contribute to the spread of the disease in cattle
and perhaps vice versa. Here data are drawn from the Four Area Project
(FAP), a formal badger removal project undertaken in four counties in Ireland
from September 1997 to August 2002 (Griffin et al., 2005).

• In the FAP, badgers were pro-actively removed from the removal areas
and in the matching reference areas culling was minimal.

• Badger information is not available for reference areas.

• For illustrative purposes we consider one area only, the removal area of
Cork, an area of approximately 400 km 2.

• The GIS coordinates for cattle herds was taken as the centroid of the
main parcel of land where the herd was located.

• A herd is recorded as TB positive if any cattle is tested positive and
similarly a sett is infected if any badger in it tests positive.

• For these data we wish to establish if bTB incidence in cattle is spatially
correlated.

Data for the combined first two culling years are considered as the majority
of badgers were captured in this period. There were 417 cattle herds with
12.2% TB positive. A spatial model with Matérn correlation function as de-
scribed above was then fitted, with covariates previous history of infection in
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the herd (0/1) and log(herd size) and log(herd size)× easting. The maximum
likelihood estimator had values φ = 0.1412(0.2242) and κ = 3.0. The β es-
timates are given in Table 1 together with the approximate standard errors.
The standard errors in Table 1 do not account for κ being estimated. They

Table 1: Predictors of TB infection in cattle herds using a spatial model

Estimate S.E.a

Intercept -1.5199 0.1025
phb 0.5308 0.2413
loghscc 7.1324 0.0162
loghsc × xd -5.1677 0.0620

astandard error; bprevious history of TB infection in the herd;
clog of herd size; dx, easting GIS coordinate of the herd location.

are also considerably smaller than those in an independence model perhaps
because considerable variation has been accounted for by spatial variation.
The correlation for the binary variables had a max = 0.5491 (with a dis-
tance of 0.18km) and a min of almost 0 (achieved by several pairs of herds).
The values are consistent with the fact the correlation between the binary
variables is lower than the corresponding correlation between the latent vari-
ables, as they should be (Chaganty and Joe, 2004). The practical range for
the binary data was estimated to be 0.91km. Note that correlations in the
binary data may not strictly decrease with distance while the correlations
between the latent variables do.
Note also that when sett size is accounted for, no spatial correlation or any
correlation between badger setts was found. The estimate of φ was zero
indicating an independence model.

4 Discussion

As noted by both De Oliveira (2020) and Diggle and Ribeiro (2007) the
inference about the binary realization depends heavily on the correlation
structure of the underlying Gaussian random field. Although a grid search
was used here to obtain optimal values of the Matérn latent correlation, it
is not feasible to carry out a grid search for the entire parameter space or to
estimate parameters of the spatial field simultaneously with the fixed effects.
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Our results are consistent with Moustakas and Evans (2017), that found
badgers mainly spread the disease locally while cattle infected both locally
and across longer distances. They report the mean distance that an infected
badger individual spreads TB is 0.92 km year−1, SD = 0.62 and the mean
distance that an infected cattle individual contributes into the spread of the
disease is 2.34 km year−1, SD = 0.98.
Spatial association of infection persisted during the proactive badger culling
period in cattle herds in Cork. Possible explanations, include residual (per-
sistent but undetected) infection in cattle, and ongoing herd-to-herd trans-
mission. Griffin et al. (2005) found proactive culling of badgers decreases
TB incidence in cattle herds. However, the scale and direction of culling re-
mains an important issue and establishing the magnitude and range of spatial
correlation may help to inform this issue.
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