
Abstract

Because of “digitalization” of the real world the discrete-valued time series are neces-
sary to model data sets in many applications, e.g. genetic analysis, information protection,
forecasting of COVID-19 dynamics.

An universal model for discrete-valued time series is the Markov chain of the sufficiently
large order s, but it leads to exponentially increasing number of model parameters. To avoid
this “curse of dimensionality” we propose to use the parsimonious models [1] to construct
algorithms for statistical analysis (parameters estimation, hypotheses testing, forecasting).

In this talk we present two main approaches to construction of parsimonious models and
also results of statistical analysis for the following parsimonious models: Markov chain of
order s with r partial connections MC(s, r) and its generalization; MTD-model; Binomial
conditionally nonlinear autoregression of order s BiCNAR(s), its special binary case and
modifications; Poisson conditionally nonlinear autoregression of order s and its modifications.

Theoretical results are illustrated by computer experiments on simulated and real statis-
tical data.
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1 Two approaches to construction of parsimonious models

Let A = {0, 1, . . . , N − 1} be finite (N = |A| < ∞) or countable (N = |A| = ∞, A = N0) state
space, and let us consider an universal model for discrete-valued time series {xt ∈ A}t∈Z, that is
the homogenous Markov chain of some sufficiently large order s, determined by the generalized
Markov property:

P {xt = it|xt−τ = it−τ , τ > 0} = P {xt = it|xt−τ = it−τ , s ≥ τ > 0} = pit−s,...,it−1,it . (1)

Here s is the memory depth, it ∈ A is the value of the process at the discrete time moment t ∈ Z,
P =

(
pit−s,...,it−1,it

)
is an (s + 1)-dimensional matrix of one-step transition probabilities. Number

DMC(s) = N s(N−1) of independent parameters for the MC(s) model increases exponentially w.r.t.
the memory depth s, and this “curse of dimensionality” makes it impossible to use the general
long-memory Markov model (1) in practice: it needs the data sets and the computation work of
size O (N s+1) to identify the model (1). To avoid the “curse of dimensionality” we propose two
approaches to construction of parsimonious (“small-parametric”) models of high-order Markov
chains determined by small number of parameters d � DMC(s) [1]. These two approaches are
based on two ways of construction of parsimonious matrix P:

1) “compression” of the set of different values of elements in matrix P;

2) using generation equations for the conditional probability distribution (1) of the future state
xt subject to its fixed prehistory.

Let us explain the first approach. Let Q=
(
qj1,...,jr,jr+1

)
be some stochastic (r+1)-dimensional

matrix, 1≤r<s,
∑

jr+1∈A

qj1,...,jr,jr+1≡1, 0≤qj1,...,jr,jr+1≤1, j1, . . . , jr+1 ∈ A; B(·) : As → Ar be some

discrete function. The (s + 1)-dimensional matrix P is compressed to the (r + 1)-dimensional
matrix Q by the transform:

pi1,...,is,is+1 = qB(i1,...,is),is+1 . (2)

The first approach is represented by the following models: Markov chain of order s with r
partial connections MC(s, r) [3, 4], Markov chain of conditional order MCCO(s, r) [5], variable
length Markov chain [6].
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The second approach is based on some generation equation for the conditional probability
distribution of the future state xt ∈ A subject its fixed prehistory X t−1

t−s = (xt−1, . . . , xt−s)
′:

pi1,...,is,is+1 = qis+1

(
θ(i1, . . . , is; a)

)
, i1, . . . , is+1 ∈ A, (3)

where {qj(θ) : j ∈ A} is some discrete probability distribution on A that is dependent on the
parameter θ = (θj) ∈ Θ ⊆ RL, θ(i1, . . . , is; a) is some parametric function a priori known up
to some unknown vector parameter a = (ak) ∈ Rm. The second approach is represented by
the following models: Jakobs – Lewis model [7], MTD-model [8], DAR(s) [9], BCNAR(s) [10],
BiCNAR(s) [11], PCNAR(s) [12].

2 CNAR-family of parsimonious models

Let us describe here a family of models derived from the second approach and results of sta-
tistical analysis for these models. We call these models conditionally nonlinear autoregressions
(CNAR). Let E be one-dimensional exponential family of probability distributions on A of the
following form:

Ex(η) = exp(h(x) + ηx− φ(η)), x ∈ A, φ(η) = ln
∑
x∈A

exp(h(x) + ηx), (4)

where the function h(x) : A → R determines the family E , the function φ(η) is called potential
[2], η is called canonic parameter of the family E . The mean value for a random variable ξ with
distribution (4) is called dual parameter of this family [2]:

θ = Eξ∼E(η){ξ} = φ′(η).

For convenience let us use the two equivalent notations for the same probability distribution from
the family E : E(η) = E [θ], Ex(η) = Ex[θ], x ∈ A. In other words, we use round brackets for
canonic parameter η and square brackets for dual parameter θ. The range of the dual parameter:
{θ} = A∗ ::= (0, N − 1) is the interval for the case of finite state space (N < ∞) and the ray
A∗ = R+ for the case of countable state space (N =∞).

We say that time series xt ∈ A is an E-based conditionally nonlinear autoregression of order s
(E-CNAR(s)), if xt is a Markov chain of order s with the following transition probabilities (1):

pxt−s,...,xt−1,xt = Ext [θXt−1
t−s

], θq = F

(
m∑
j=1

ajψj(q)

)
, q ∈ As, (5)

where ψj : As → R, j = 1, . . . ,m, are m linearly independent base functions, F : R → A∗ is a
smooth bijection, and a = (aj)

m
j=1 ∈ Rm is the vector of m� DMC(s) unknown model parameters.

Note, that for the finite state space (N <∞) the function F (·) is representable as some smooth
CDF multiplied by (N − 1). For instance, the Gaussian CDF may be used:

F (u) = (N − 1)Φ(u), Φ(u) =
1√
2π

∫ u

−∞
e−t

2/2dt, u ∈ R.

Example 1. Binomial family E [θ] = Bi(N − 1, θ/(N − 1)), N < ∞, leads to the BiCNAR
model [11]. Its special binary case for N = 2 is called BCNAR model [10].

Example 2. Poisson family E [θ] = Poisson(θ), N =∞, leads to the PCNAR model [12].
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3 The family of frequency-based estimators for CNAR-

models

Maximum likelihood estimation (MLE) for the unknown parameters of the models is often a
highly complicated problem due to many local maximums of the log-probability function and
computational complexity of its numerical maximization in the cases when the MLE does not
have an explicit form. Let us present here the family of frequencies-based estimators (FBE) for
CNAR-models, that are free of these shortcomings, have explicit form, are asymptotically efficient,
and fast recursively computable.

Let the time series x1, . . . , xT ∈ A of the length T > m be observed, and let

θ̂q =

∑T
t=s+1 xt1

{
X t−1
t−s = q

}∑T
t=s+1 1

{
X t−1
t−s = q

} , q ∈MT ⊂ As, (6)

be a sample (frequency-based) estimator for conditional mean E
{
xt|X t−1

t−s = q
}

, where 1 {B} is the
indicator function for the event B, MT is the subset of s-prehistories for which the denominator is
positive in (6)) and 0 < θ̂q < N − 1. Using (5), let us construct an asymptotically overdetermined

system of |MT | equations w.r.t. a: F−1(θ̂q) =
∑m

j=1 ajψj(q), q ∈MT . The quadratic error function
for this system (H = (Hq,q′)q,q′∈MT

is positive definite symmetric matrix):

W (a) =
∑

q,q′∈MT

Hq,q′

(
F−1(θ̂q)−

m∑
j=1

ajψj(q)

)(
F−1(θ̂q′)−

m∑
j=1

ajψj(q
′)

)

can be minimized w.r.t. a explicitly, which leads to the FBE:

â ::= arg min
a∈Rm

W (a). (7)

In addition to the listed advantages, the FBE (7) has less restrictive uniqueness conditions on the
function F (·) w.r.t. the MLE.

We have proved consistency, asymptotic normality and asymptotic efficiency of the FBE (7).
Theoretical results are illustrated in computer experiments on simulated and real data.
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