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Abstract:

Double machine learning (DML) can be used to estimate the linear coefficient in a partially linear

model with confounding variables. However, the standard DML estimator has a two-stage least

squares interpretation and may yield overly wide confidence intervals. To address this issue, we

present the regularization-selection regsDML method that leads to narrower confidence intervals

but preserves coverage guarantees. We rely on DML to estimate nuisance parameters with arbi-

trary machine learning algorithms and combine it with a regularization and selection scheme. Our

regsDML method is fully data driven and optimizes the estimated asymptotic mean squared error

of the coefficient estimate. The regsDML estimator can be expected to converge at the parametric

rate and to follow an asymptotic Gaussian distribution. Empirical examples demonstrate our the-

oretical and methodological developments. Software code for the regsDML method is available in

the R-package dmlalg.
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1. Introduction:

We consider a structural equation model (SEM) whose equation of the response is given by the

endogenous partially linear model (PLM)

Y ← XTβ0 + gY (W ) + hY (H) + εY . (1)

This PLM combines flexibility of the nonparametric function of W with ease of interpretation of

the linear term of X. The variable H in (1) is unobserved and introduces endogeneity if it corre-

lates with X andW . A common approach to cope with endogeneity uses two-stage least squares

(TSLS) (Angrist et al., 1996) with an instrumental variable that does not appear on the right hand

side of (1), which we call A. The variable εY in (1) denotes a random error.

Chernozhukov et al. (2018) introduced “standard” double machine learning (DML) to estimate β0
in a model similar to (1). The central ingredients are Neyman orthogonality and sample splitting

with cross-fitting. These ingredients allow potentially biased machine learning (ML) estimates of
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nuisance terms to be plugged into the estimating equation of β0. Emmenegger and Bühlmann

(2021) refine this DML procedure in the PLM (1). They only require the identifiability condition

E
[
RA(RY −RT

Xβ0)
]
= 0 (2)

for the adjusted variables RA := A−E[A|W ], RX := X −E[X|W ], and RY := Y −E[Y |W ] instead
of conditional moment restrictions. Moreover, the dimension of A may exceed the dimension of X
in Emmenegger and Bühlmann (2021). This overidentification can lead to more efficient and more

robust estimators.

Both DML estimators of β0 in Chernozhukov et al. (2018) and Emmenegger and Bühlmann (2021)

are asymptotically Gaussian distributed and converge at the parametric rate although ML algo-

rithms are used to learn the nuisance terms. However, both have a TSLS interpretation. In TSLS

estimation, the strength of the instruments can lead to nonexisting variance and overly wide con-

fidence intervals. K-class estimators can sometimes reduce this variance (Theil, 1961; Rothen-

häusler et al., 2021; Jakobsen and Peters, 2020). There is a large literature on the presented

concepts, and more references are given in Emmenegger and Bühlmann (2021).

We present the regularization-selection method regsDML (Emmenegger and Bühlmann, 2021) to

reduce the potentially excessive standard deviation of DML. The regsDML estimator selects either

the DML estimator or its regularized version regDML, depending on which one has a smaller stan-

dard deviation. The regularization parameter of regsDML is data driven. The coefficient estimator

can be expected to converge at the parametric rate and to follow an asymptotic Gaussian distribu-

tion. The regsDML method focuses on statistical inference beyond point estimation with coverage

guarantees in potentially complex partially linear models.

Overview: Section 2 presents the regularization schemes and supporting theory. Section 3 applies

our method in a simulation study and a real data experiment. Section 4 concludes our work.

2. Methodology:

The regularization-only estimator regDML is obtained by regularizing DML and choosing a data-

driven regularization parameter. Subsequently, we introduce it for a fixed regularization parameter

γ ≥ 0. Consider the operator PRA
(·) := E

[
· RT

A

]
E
[
RAR

T
A

]−1
RA that projects linearly onto the

adjusted termRA = A−E[A|W ]. Recall the adjustmentsRX = X−E[X|W ] andRY = Y −E[Y |W ].
The regularized population coefficient bγ optimizes

bγ := argmin
β∈Rd

E
[(
(Id−PRA

)(RY −RT
Xβ)

)2]
+ γ E

[(
PRA

(RY −RT
Xβ)

)2]
, (3)

where Id denotes the identity operator. This objective function is form-wise analogous to the one

used in anchor regression (Rothenhäusler et al., 2021) or K-class regression (Theil, 1961). If γ = 1,
ordinary least squares (OLS) of RY on RX is performed. If γ = 0, then RA is partialled out or ad-

justed for. If γ =∞, TSLS of RY on RX with the instrument RA is performed, and bγ coincides with
β0 from (1). If a general γ > 1 is considered, bγ interpolates between OLS and TSLS.

We estimate bγ with double machine learning. LetN iid observations {Si = (Ai, Xi,Wi, Yi)}i∈[N ] of

S = (A,X,W, Y ) ∈ Rq+d+v+1 from the SEM (1). They are concatenated row-wise into A ∈ RN×q,

X ∈ RN×d,W ∈ RN×v, and Y ∈ RN . The dimension v ofW may grow withN , but the dimensions

q, d, and 1 of A, X, and Y , respectively, are fixed. Also β0 is of fixed dimension d.
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First, the data is split into K ≥ 2 disjoint sets I1, . . . , IK . For simplicity, we assume these sets are

of equal cardinality n = N
K , but the cardinalities may differ in practice due to rounding.

The conditional expectations m0
A(W ) := E[A|W ], m0

X(W ) := E[X|W ], and m0
Y (W ) := E[Y |W ] in

RA, RX , and RY , respectively, act as nuisance parameters and are estimated with ML algorithms.

For each k ∈ [K], they are estimated by m̂
Ick
A , m̂

Ick
X , and m̂

Ick
Y , respectively, with data from the

complement Ick of Ik. Then, the adjustments R̂Ik
A,i := Ai − m̂

Ick
A (Wi), R̂

Ik
X,i := Xi − m̂

Ick
X (Wi), and

R̂Ik
Y,i := Yi−m̂

Ick
Y (Wi) for i ∈ Ik are evaluated on Ik. These adjustments are concatenated row-wise

into R̂
Ik
A ∈ Rn×q, R̂

Ik
X ∈ Rn×d, and R̂

Ik
Y ∈ Rn, respectively.

The K iterates are assembled to form the estimator

b̂γ :=

(
1

K

K∑
k=1

(
R̂

Ik
X̃

)T
R̂

Ik
X̃

)−1 1

K

K∑
k=1

(
R̂

Ik
X̃

)T
R̂

Ik
Ỹ (4)

of bγ , where R̂
Ik
X̃ := (1 + (

√
γ − 1)Π

R̂
Ik
A

)R̂
Ik
X and R̂

Ik
Ỹ := (1 + (

√
γ − 1)Π

R̂
Ik
A

)R̂
Ik
Y are projected

terms, where Π
R̂

Ik
A

:= R̂
Ik
A

((
R̂

Ik
A

)T
R̂

Ik
A

)−1(
R̂

Ik
A

)T
denotes the orthogonal projection matrix onto

the column space of R̂
Ik
A , and where 1 denotes the identity matrix. Therefore, b̂γ is obtained from

a finite sample version of (3) by replacing PRA
by Π

R̂
Ik
A

.

The closed-form expression (4) of b̂γ resembles an OLS scheme. It is also possible to perform K

individual OLS regressions of R̂
Ik
Ỹ on R̂

Ik
X̃ for k ∈ [K] and average the resulting coefficients. Both

schemes are asymptotically equivalent, but the presented scheme enhances stability of b̂γ .

The K sample splits are random. To reduce the effect of this randomness, the overall procedure

is repeated S times, and a correction term is added to the variance estimates to account for the

random splitting. The results are assembled with the median as suggested in Chernozhukov et al.

(2018). A summary of this procedure is given inAlgorithm 1 in Emmenegger and Bühlmann (2021).

We have the following description of the asymptotic behavior of the estimator b̂γ .

Theorem 2.1. (Emmenegger and Bühlmann, 2021, Theorem 4.1) Let γ ≥ 0. Suppose Assump-

tion G.5 in Emmenegger and Bühlmann (2021) holds, and denote the true nuisance parameter by

η0 := (m0
A,m

0
X ,m

0
Y ). Then, b̂

γ is approximately linear and centered Gaussian. More precisely,

√
Nσ−1(γ)(b̂γ − bγ) = 1√

N

N∑
i=1

ψ(Si; b
γ , η0) + oP (1)

d→ N (0,1d×d) (N →∞)

for some variance-covarince matrix σ(γ) and some ψ uniformly over laws P of S = (A,W,X, Y ).

Assumption G.5 in Emmenegger and Bühlmann (2021) specifies regularity conditions. The L2-

norms of the ML estimation errors need to decay fast enough: for k ∈ [K], the error terms ekA :=

‖m0
A(W )−m̂Ick

A (W )‖2, ekX := ‖m0
X(W )−m̂Ick

X (W )‖2, and ekY := ‖m0
Y (W )−m̂Ick

Y (W )‖2 need to satisfy
the product relations (ekA)

2 � N− 1
2 , ekX(ekY + ekX) � N− 1

2 , and ekA(e
k
Y + ekX) � N− 1

2 . This allows

the individual error terms to be of larger order than N− 1
2 . In particular, they may be of order N− 1

4 ,

which allows us to use almost arbitrary ML algorithms; see Chernozhukov et al. (2018).

The asymptotic variance σ2(γ) in Theorem 2.1 can be consistently estimated (Emmenegger and

Bühlmann, 2021, Theorem H.3). For γ < ∞, the asymptotic variance σ2(γ) is typically smaller

than the one of the DML estimator.
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Furthermore, the proof of Theorem 2.1 uses Neyman orthogonality of the underlying score func-

tions, which makes them insensitive to inserting biased ML estimators of the nuisance parameters.

Our score functions are Neyman orthogonal because their Gateaux derivative vanishes at η0. This
property neither depends on the distribution of S nor on the true unknown β0 and η

0.

Subsequently, we introduce a data-driven scheme to choose the regularization parameter γ, and
we present the regularization-selection scheme regsDML.

For simplicity, we assume d = 1. We choose the data-driven regularization parameter estimator

γ̂′ := aN · argmin
γ≥0

1

N
σ̂2(γ) + |b̂γ − β̂|2,

which optimizes the estimated asymptotic mean squared error (MSE) of b̂γ . The term σ̂2(γ) is the
consistent estimator of σ2(γ) from Emmenegger and Bühlmann (2021, Theorem H.3). The term

|b̂γ − β̂|2 is a plug-in estimator of the squared population bias |bγ − β0|2, where the DML estimator

β̂ from Emmenegger and Bühlmann (2021) replaces β0. The deterministic multiplication factor aN
may be chosen arbitrarily, but it needs to diverge to +∞ as N → ∞. However, we observed that

aN = log(
√
N) works well in practice. This multiplicative factor ensures that the population bias

term |bγ̂′ − β0| with γ̂′ vanishes at the rate oP (N
− 1

2 ). Thus, we can argue that b̂γ̂
′
is approximately

Gaussian distributed, which allows us to construct approximately valid confidence intervals. More

precisely, we expect
√
N(b̂γ̂

′−β0) ≈ N
(
0, σ2(γ̂′)

)
wheneverN is sufficiently large; see Emmeneg-

ger and Bühlmann (2021). This argument is not entirely rigorous because γ̂′ is estimated from all

the data. Both b̂γ̂
′
and β̂ have the same asymptotic MSE behavior, but b̂γ̂

′
may exhibit substantially

better finite sample properties.

We call b̂γ̂
′
the regDML (regularized DML) estimator. The regularization-selection method regsDML

selects between the DML estimator β̂ and regDML based on whose variance is smaller. It can be

expected that regsDML concentrates in a N− 1
2 neighborhood of β0 and asymptotically follows a

Gaussian distribution as does the DML estimator β̂.

3. Result:

This section illustrates the performance of regsDML, regDML, and DML in a simulation study and

on a real dataset. We use K = 2 sample splits and S = 100 overall repetitions and estimate

the nuisance parameters with random forests. Our implementation is available in the R-package
dmlalg (Emmenegger, 2021).

First, we consider a simulation study. We generate data from the overidentified SEM (β0 = 1)

(εA1 , εA2,εW1 , εW2 , εH , εX , εY ) ∼ N7(0,1), W2 ← εW2 ,
A1 ← 1{εA1

≤0}, H ← 21{sin(πW1)·tanh(W2)≥0} + εH ,

A2 ← −4A1 + εA2 , X ← 3
2A1 − 1

2A2 + tanh(H)− 21{W1≥0,W2≤0} + εX ,

W1 ← 2A2 + εW1 , Y ← X + 1{W2≤0} + sin(πH) + εY
(5)

from Emmenegger and Bühlmann (2021). This SEM contains step functions and interaction terms.

The identifiability condition (2) is satisfied, so that DML is asymptotically Gaussian.
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Figure 1 illustrates our simulation results. The lengths of the regsDML confidence intervals are

about 50% to 80% the lengths of DML’s. Nevertheless, the coverage of regsDML remains around

the nominal 95% level. No coverage region falls below the 95% level marked by the gray line. The

power of DML is lower for small sample sizes N . As N increases, regsDML starts to resemble

DML’s behavior but continues to produce shorter confidence intervals. Thus, regsDML (and also

its regularization-only version regDML) is a highly effective method to increase the power and

sharpness of statistical inference and to keep the type I error and coverage under control.

Simulation results with β0 = 0 in the SEM (5) are similar and presented in Figure 11 in Emmeneg-

ger and Bühlmann (2021).

Figure 1: (Emmenegger and Bühlmann, 2021, Figure 8) The results come from 200 simulation

runs from the SEM (5) for a range of sample sizes N withK = 2 sample splits and S = 100 overall
repetitions. The nuisance parameters are estimated with random forests consisting of 500 trees

whose minimal node size is 5. The figure displays the coverage of two-sided confidence intervals

for β0, power for two-sided testing of the hypothesis H0 : β0 = 0, and scaled lengths of two-sided

confidence intervals of DML (red), regDML (blue), and regsDML (green), all at level 95%. At each

N , the lengths of the confidence intervals are scaled with the median length from DML. The shaded

regions in the coverage and the power plots represent 95% confidence bands with respect to the

200 simulation runs. The blue and green lines are indistinguishable in the left panel.
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Second, we consider a real data example. We estimate the linear effect β0 of institutions on the

economic performance of countries following the work of Acemoglu et al. (2001), Chernozhukov

et al. (2018), and Emmenegger and Bühlmann (2021). We adjust nonlinearly for the latitude and

some binary geographic information. Simultaneity may be present because countries with better

institutions achieve a greater level of income and vice versa. However, mortality rates of the first

European settlers serve as a source of exogenous variation in institutions. The dataset contains

N = 64 observations. Please see Emmenegger and Bühlmann (2021) for further details.

We use K = 2 sample splits and S = 100 overall repetitions and estimate the nuisance param-

eters with random forests consisting of 1000 trees whose minimal node size is 5. The DML point

estimator of β0 is 0.739, its standard deviation is 0.459, and its two-sided 95% confidence interval

is [−0.161, 1.639]. The regsDML point estimator of β0 is 0.688, its standard deviation is 0.229, and
its two-sided 95% confidence interval is [0.239, 1.136]. The DML estimate is not significant because
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its confidence interval contains 0. The regsDML estimate is significant and has a smaller standard

deviation than DML. Note that regsDML falls within the DML confidence interval.

Chernozhukov et al. (2018) use the same machine learners to analyze this data, but obtain a sig-

nificant DML point estimator due to a smaller standard deviation. However, they implicitly assume

an additional homoscedasticity condition on the errors RY −RT
Xβ0, which is questionable.

4. Discussion and Conclusion:

We regularized double machine learning (DML) in overidentified partially linear models (PLMs) with

endogenous variables to perform inference for the linear parameter. Standard DML methods can

lead to overly wide confidence intervals due to their two-stage least squares (TSLS) interpretation.

This effect is particularly pronounced if the confounding is strong.

We presented a regularization scheme, regDML, and a regularization-selection scheme, regsDML.

The latter selects between DML and regDML depending on whose standard deviation is smaller.

For finite sample sizes, regsDML leads to drastically shorter confidence intervals than DML. Nev-

ertheless, coverage guarantees for β0 remain: both regDML and regsDML are expected to con-

centrate in an N− 1
2 neighborhood of β0 and to follow a Gaussian distribution asymptotically.

Depending on the strength of the confounding, regsDMLmay inherit additional bias from the biased

DML estimator. Emmenegger and Bühlmann (2021, Section E) present examples with strong and

reduced confounding to demonstrate the coverage behavior of DML and regsDML.

Although a wide range of machine learners can be employed to estimate the nuisance parameters,

additive splines can estimate more precise results than random forests if the underlying structure

is additive in good approximation, especially if the sample size is small.

The regsDMLmethodology can be used with the implementation that is available in the R-package
dmlalg (Emmenegger, 2021).
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