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Abstract 
A seemingly unrelated regression model is a set of multiple regression models with 
correlations. Recently, some aspects of optimal equivariant estimation of the regression 
vectors and the covariance matrix in a seemingly unrelated regression model have been 
discussed by the authors. As for the covariance matrix estimation, the best equivariant 
estimator under Stein’s loss function was derived. In this paper, other loss functions are 
considered, which leads to different best equivariant estimators of the covariance matrix. The 
differences between the estimators are also examined. 
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1. Introduction
A seemingly unrelated regression (SUR) model is a set of regression models

𝒚𝑖 = 𝑿𝑖𝜷𝑖 + 𝜺𝑖    (𝐸[𝜺𝑖] = 𝟎𝑛,  𝑉[𝜺𝑖] = 𝜎𝑖
2𝑰𝑛),    𝑖 = 1, … , 𝑝

with correlations 

𝐸[𝜺𝑖𝜺𝑗
′] = 𝜎𝑖𝜎𝑗𝑟𝑖𝑗𝑰𝑛,    𝑖, 𝑗 = 1, … , 𝑝 (𝑖 ≠ 𝑗),

where 𝒚𝑖 is an 𝑛-dimensional response vector, 𝑿𝑖 is an 𝑛 × 𝑘𝑖 explanatory matrix of rank 𝑘𝑖, 

𝜷𝑖  is a 𝑘𝑖 -dimensional regression vector, 𝜺𝑖  is an 𝑛-dimensional error vector, 𝟎𝑛  is the 𝑛-

dimensional zero vector, 𝑰𝑛 is the 𝑛 × 𝑛 identity matrix, 𝜎𝑖
2(> 0) is the error variance of the 𝑖th

regression model, and 𝑟𝑖𝑗 is the correlation coefficient between the error terms of the 𝑖th and 

𝑗th regression models. Let 

𝒚 = (𝒚1
′ , … , 𝒚𝑝

′ )
′
,   𝑿 = diag{𝑿1, … , 𝑿𝑝},   𝜷 = (𝜷1

′ , … , 𝜷𝑝
′ )

′
,   𝜺 = (𝜺1

′ , … , 𝜺𝑝
′ )

′
,

𝜮𝑑 = diag{𝜎1, … , 𝜎𝑝},   𝑟𝑖𝑖 = 1 (𝑖 = 1, … , 𝑝),   𝜦 = (𝑟𝑖𝑗)
𝑖,𝑗=1,…,𝑝

,

where 𝜦 is assumed to be full rank and thus positive definite. Then, we have 

𝒚 = 𝑿𝜷 + 𝜺   (𝐸[𝜺] = 𝟎𝑛𝑝,    𝑉[𝜺] = 𝜮 ⊗ 𝑰𝑛 = 𝜮𝑑𝜦𝜮𝑑 ⊗ 𝑰𝑛),

where ⊗ denotes the Kronecker product. 
The SUR model has been widely discussed and applied to various areas (Zellner (1962), 

Srivastava and Giles (1987), Kariya and Kurata (2004), Shah et al. (2004)). Although this 
paper focuses on equivariant estimation in SUR model, recent studies on various aspects of 
SUR model include, for example, Alkhamisi et al. (2019), Gong (2019), Jiang et al. (2020), 
and Zhao et al. (2018). 

2. Best equivariant estimators in SUR model
Suppose that the probability density function of 𝜺 is elliptically symmetric:

𝑔(𝜺) = |𝜮|−
𝑛

2ℎ(𝜺′(𝜮 ⊗ 𝑰𝑛)−1𝜺) for some known probability density function ℎ
and the correlation matrix 𝜦  is known. Kurata and Matsuura (2016) derived the best 

equivariant estimator of the integrated regression vector 𝜷 under the following loss function 
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𝐿(𝜷̂) = (𝜷̂ − 𝜷)
′
𝑿′(𝜮 ⊗ 𝑰𝑛)−1𝑿(𝜷̂ − 𝜷), 

and Matsuura and Kurata (2020) gave the best equivariant estimator of the covariance matrix 
𝜮 under the Stein’s loss function 

𝐿1(𝜮̂) = tr{𝜮̂𝜮−1} − log |𝜮̂𝜮−1| − 𝑝. 

Here, estimators 𝜷̂𝑖(𝒚1, … , 𝒚𝑝), 𝑖 = 1, … , 𝑝 and 𝜮̂(𝒚1, … , 𝒚𝑝) are called equivariant if 

𝜷̂𝑖(𝑎1𝒚1 + 𝑿1𝒄1, … , 𝑎𝑝𝒚𝑝 + 𝑿𝑝𝒄𝑝) = 𝑎𝑖𝜷̂𝑖(𝒚1, … , 𝒚𝑝) + 𝒄𝑖 ,   𝑖 = 1, … , 𝑝, 

𝜮̂(𝑎1𝒚1 + 𝑿1𝒄1, … , 𝑎𝑝𝒚𝑝 + 𝑿𝑝𝒄𝑝) = 𝑨𝜮̂(𝒚1, … , 𝒚𝑝)𝑨 with 𝑨 = diag{𝑎1, … , 𝑎𝑝} 

for any 𝑎𝑖 > 0,  𝒄𝑖 ∈ 𝑅𝑘𝑖 ,  𝑖 = 1, … , 𝑝. 

Let 𝒆𝑖 = (𝑰𝑛 − 𝑿𝑖(𝑿𝑖
′𝑿𝑖)−1𝑿𝑖

′)𝒚𝑖 , 𝒖𝑖 =
𝒆𝑖

‖𝒆𝑖‖
, 𝑖 = 1, … , 𝑝 , 𝑲 = diag{‖𝒆1‖, … , ‖𝒆𝑝‖} , and 𝒖 =

(𝒖1
′ , … , 𝒖𝑝

′ )
′
. Matsuura and Kurata (2020) showed that the best equivariant estimator of 𝜮 

under the Stein’s loss function 𝐿1 is given by 

𝜮̂1 = 𝑲(𝑻(𝒖) ∘ 𝜦−1)−1𝑲 

with 𝑡𝑖𝑗(𝒖) = 𝐸(𝟎𝑘,𝜦)[‖𝒆𝑖‖‖𝒆𝑗‖|𝒖],   𝑖, 𝑗 = 1, … , 𝑝,   𝑻(𝒖) = (𝑡𝑖𝑗(𝒖))
𝑖,𝑗=1,…,𝑝

, 

where ∘ denotes the Hadamard product and 𝐸(𝟎𝑘,𝜦)[ ] denotes the expectation under 𝜷 = 𝟎𝑘 

(𝑘 = ∑ 𝑘𝑖
𝑝
𝑖=1 ) and 𝜮 = 𝜦. Matsuura and Kurata (2020) also showed that the best equivariant 

estimator of 𝜷 given by Kurata and Matsuura (2016) is expressed as the generalized least 

squares estimator using 𝜮̂1, that is, 𝜷̂ = (𝑿′(𝜮̂1 ⊗ 𝑰𝑛)
−1

𝑿)
−1

𝑿′(𝜮̂1 ⊗ 𝑰𝑛)
−1

𝒚. 

 
3. Best equivariant estimators of the covariance matrix under other loss functions in 

SUR model 
This paper considers other loss functions for the estimation of 𝜮. More specifically, we 

present the best equivariant estimators of 𝜮 under the following loss functions: 

𝐿2(𝜮̂) = tr {(𝜮̂𝜮−1 − 𝑰𝑝)
2

}, 

𝐿3(𝜮̂) = tr{𝜮̂−1𝜮} − log |𝜮̂−1𝜮| − 𝑝. 

The loss function 𝐿2(𝜮̂) is a common loss function for the covariance matrix estimation as well 

as the Stein’s loss function 𝐿1(𝜮̂). The loss function 𝐿3(𝜮̂) can be viewed as the Stein’s loss 

function for the estimation of the precision matrix 𝜮−1. 
 

Proposition 1. Let 𝜌𝑖𝑗 denote the (𝑖, 𝑗)th element of 𝜦−1. Let also 

𝝆𝑗 = (𝜌1𝑗 , … , 𝜌𝑝𝑗)
′
,   𝑗 = 1, … , 𝑝,   𝝆 = vec(𝜦−1) = (𝝆1

′ , … , 𝝆𝑝
′ )

′
,   𝚷 = (𝝆𝑗𝝆𝑖

′)
𝑖,𝑗=1,…,𝑝

, 

𝒌 = (‖𝒆1‖, … , ‖𝒆𝑝‖)
′
,   𝒎𝑖(𝒖) = 𝐸(𝟎𝑘,𝜦)[‖𝒆𝑖‖𝒌|𝒖], 𝑖 = 1, … , 𝑝,   𝒎(𝒖) = (𝒎1(𝒖)′, … , 𝒎𝑝(𝒖)′)

′
, 

𝑴𝑖𝑗(𝒖) = 𝐸(𝟎𝑘,𝜦)[‖𝒆𝑖‖‖𝒆𝑗‖𝒌𝒌′|𝒖], 𝑖, 𝑗 = 1, … , 𝑝,   𝑴(𝒖) = (𝑴𝑖𝑗(𝒖))
𝑖,𝑗=1,…,𝑝

. 

Suppose that 𝑴(𝒖) ∘ 𝚷 is invertible. Then, the best equivariant estimator of 𝜮 under the loss 

function 𝐿2 is given by 

𝜮̂2 = 𝑲𝑸(𝒖)𝑲 with vec(𝑸(𝒖)) = (𝑴(𝒖) ∘ 𝚷)−1(𝒎(𝒖) ∘ 𝝆). 

 

Proposition 2. Suppose that 𝐸(𝟎𝑘,𝜦) [
1

‖𝒆𝑖‖‖𝒆𝑗‖
] , 𝑖, 𝑗 = 1, … , 𝑝 are finite. Let 

𝑠𝑖𝑗(𝒖) = 𝐸(𝟎𝑘,𝜦) [
1

‖𝒆𝑖‖‖𝒆𝑗‖
| 𝒖] ,   𝑖, 𝑗 = 1, … , 𝑝,   𝑺(𝒖) = (𝑠𝑖𝑗(𝒖))

𝑖,𝑗=1,…,𝑝
. 

Then, the best equivariant estimator of 𝜮 under the loss function 𝐿3 is given by 

𝜮̂3 = 𝑲(𝑺(𝒖) ∘ 𝜦)𝑲. 
 

Proofs of the propositions are omitted in this paper. These results indicate that different 

loss functions 𝐿1, 𝐿2, and 𝐿3 lead to different best equivariant estimators 𝜮̂1, 𝜮̂2, and 𝜮̂3. In 

particular, 𝜮̂1, 𝜮̂2, and 𝜮̂3 use different moments of ‖𝒆𝑖‖, 𝑖 = 1, … , 𝑝 conditioned on 𝒖. As noted 

in Section 2, the best equivariant estimator of 𝜷 given by Kurata and Matsuura (2016) under 
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the loss function 𝐿(𝜷̂) is expressed as the generalized least squares estimator using 𝜮̂1. It 

might be expected that the generalized least squares estimators using 𝜮̂2 and 𝜮̂3 may also be 

the best equivariant estimators of 𝜷 under other loss functions, which will be a topic for future 
research. 
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