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Abstract
Maximum composite likelihood estimation is a useful alternative to maximum likelihood estimation when data

arise from data generating processes (DGPs) that do not admit tractable joint specification. We demonstrate that
generic composite likelihoods consisting of marginal and conditional specifications permit the simple construction
of composite likelihood ratio-like statistics from which finite-sample valid confidence sets and hypothesis tests
can be constructed. These statistics are universal in the sense that they can be constructed from any estimator
for the parameter of the underlying DGP. We demonstrate our methodology via a simulation study using a pair
of conditionally specified bivariate models.

Key words: Composite likelihoods; Pseudolikelihoods, Confidence sets; Hypothesis tests; Conditional models

1 Introduction
Likelihood-based methods are among the most important tools for conducting statistical inference. However, data
generating processes (DGPs) of complex models often do not admit tractable likelihood functions. In such cases, a
potential remedy is to specify the model based on more amenable marginal and conditional probability density/mass
functions (PDFs/PMFs) of the DGP, instead. This joint specification is often referred to as the composite likelihood
(CL) or pseudolikelihood.

The literature regarding CL-based inference has its roots in the works of Besag [1975] and Lindsay [1988].
Further developments regarding the theory and application of CL methods can be found in Arnold and Strauss
[1991], Molenberghs and Verbeke [2005], Varin et al. [2011], Yi [2014], and Nguyen [2018], among other works.

We build upon the recent work of Wasserman et al. [2020] who demonstrated the construction of sample splitting
and sample swapping likelihood ratio statistics that yield finite-sample valid confidence sets and hypothesis tests,
and are universal in the sense that they are agnostic to parameter estimators. The inferential constructions are
similar to the recently popularized e-values of Vovk and Wang [2021], as well as the s-values of Grunwald et al. [2020]
and the betting scores of Shafer [2021]. We demonstrate how our CL-based methods can be used via applications
to constructing confidence sets and tests for a pair of conditionally specified bivariate models. Here, we consider
simulations study regarding the exponential conditional model of Arnold et al. [1999] and the log-normal conditional
model of Sarabia et al. [2007].

The paper proceeds as follows. In Section 2, we present the CL framework and the universal confidence set and
hypothesis test constructions. A simulation study of our methodology is presented in Section 3.

2 Universal inference via composite likelihoods
Let X ∈ X ⊆ Rd be a random variable arising from a parametric distribution characterized by the PDF/PMF
(generically, PDF) p (x;θ), where θ ∈ Θ ⊆ Rq is a parameter vector (d, q ∈ N). We shall write X> = (X1, . . . , Xd)
to indicate a random variable and x> = (x1, . . . , xd) to indicate its realization.

Let 2[d] be the power set of [d] = {1, . . . , d}, and let Sd = 2[d]\ {∅}. For each S ∈ Sd, let S =
{
s1, . . . , s|S|

}
⊆ [d],

where |S| is the cardinality of S. Further, let Td be the set of all divisions of [d] into two nonempty subsets. We rep-

resent each element of Td as a pair T =
(←−
T ,
−→
T
)
, where

←−
T =

{
←−
t 1, . . . ,

←−
t ∣∣∣←−T ∣∣∣

}
⊂ [d] and

−→
T =

{
−→
t 1, . . . ,

−→
t ∣∣∣−→T ∣∣∣

}
⊂

[d] \
←−
T are the ’left-hand’ and ’right-hand’ subsets of the division T , respectively. We note that |Sd| = 2d − 1 and

|Td| = 3d − 2d+1 + 1.
∗Corresponding author—Email: h.nguyen5@latrobe.edu.au. 1Department of Mathematics and Statistics, La Trobe University, Mel-

bourne, Australia.

1

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000304



For each S and T , we assign a non-negative coefficient σS and τT , respectively. We call these coefficients the
weights, and we put these weights into the vectors σ = (σS)S∈Sd and τ = (τT )T ∈Td

, respectively. Assume that
υ =

∑
S∈Sd σS +

∑
T ∈Td

τT > 0.
Given weights σ and τ , we define the individual CL (ICL) function for X as

pσ,τ (x;θ) =
∏
S∈Sd

[p (xS ;θ)]
σS/υ

∏
T ∈Td

[
p
(
x←−T |x−→T ;θ

)]τT /υ ,
where x>S =

(
xs1 , . . . , xs|S|

)
, x←−T =

(
x←−
t 1
, . . . , x←−

t |←−T |

)
, and x−→T =

(
x−→
t 1
, . . . , x−→

t |−→T |

)
. Here, p (xS ;θ) is the

marginal PDF of XS , and p
(
x←−T |x−→T ;θ

)
is the conditional PDF of X←−T conditioned on X−→T = x−→T .

2.1 Sample splitting and sample swapping
Let Xn = (Xi)

n
i=1 be a sequence of n IID random variables with the same DGP as X, and split Xn into two

subsamples X1
n =

(
X1
i

)n1

i=1
and X2

n =
(
X2
i

)n2

i=1
of sizes n1 and n2, respectively, where n = n1 +n2. We assume that

X has a DGP that is characterized by the PDF p (x;θ0), for some θ0 ∈ Θ, and we let Prθ0 be its corresponding
probability measure. Let θ̂1

n and θ̂2
n be a pair of generic estimators of θ0, computed using onlyX1

n orX2
n, respectively.

For k ∈ {1, 2}, we let

Lσ,τ
(
θ;Xk

n

)
=

nk∏
i=1

pσ,τ
(
Xk
i

)
be the CL function of Xk

n, as a function of θ. We write the split sample CL ratio statistics (spCLRSs) and the
swapped sample CL ratio statistic (swCLRS) as

Ukσ,τ (θ;Xn) = Lσ,τ

(
θ̂3−k;Xk

n

)
/Lσ,τ

(
θ;Xk

n

)
,

for each k ∈ {1, 2}, and
Ūσ,τ (θ;Xn) =

{
U1
σ,τ (θ;Xn) + U2

σ,τ (θ;Xn)
}
/2,

respectively.
For α ∈ (0, 1), let

Cα (Xn) =
{
θ ∈ Θ : U1

σ,τ (θ;Xn) ≤ 1/α
}

and C̄α (Xn) =
{
θ ∈ Θ : Ūσ,τ (θ;Xn) ≤ 1/α

}
be confidence sets based on the spCLRS and the swCLRS, respectively. We have the following result regarding the
validity of Cα (Xn) and C̄α (Xn) (all theoretical results in this work are proved in Nguyen, 2020).

Proposition 1. The set estimators Cα (Xn) and C̄α (Xn) are finite sample-valid 100 (1− α) % confidence sets for
θ0 in the sense that

Prθ0 (θ0 ∈ Cα (Xn)) ≥ 1− α, and Prθ0
(
θ0 ∈ C̄α (Xn)

)
≥ 1− α,

for any n ∈ N.

We now consider the testing of null and alternative hypotheses

H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1,

where Θ0,Θ1 ⊆ Θ. Let

M
(
Xk
n

)
=

{
θ ∈ Θ0 : Lσ,τ

(
θ;Xk

n

)
= max
ϑ∈Θ0

Lσ,τ
(
ϑ;Xk

n

)}
be the set of maximizers of the CL function Lσ,τ

(
θ;Xk

n

)
, for each k ∈ {1, 2}, and write θ̃kn ∈ M

(
Xk
n

)
. We then

write the sample splitting and sample swapping test statistics as

V kσ,τ (Xn) = Ukσ,τ

(
θ̃kn

)
, and V̄σ,τ (Xn) =

{
U1
σ,τ

(
θ̃1
n

)
+ U2

σ,τ

(
θ̃2
n

)}
/2,

respectively. Further, define the split sample CL ratio test (spCLRT) and the swapped sample CL ratio test
(swCLRT) by the rejection rules: reject H0 if V 1

σ,τ (Xn) ≥ 1/α or if V̄σ,τ (Xn) ≥ 1/α, respectively. We have the
following result regarding the finite sample-validity of the tests.

Proposition 2. The spCLRT and swCLRT control the Type I error for all α ∈ (0, 1) and n ∈ N in the sense that

sup
θ0∈Θ0

Prθ0
(
V 1
σ,τ (Xn) > 1/α

)
≤ α, and sup

θ0∈Θ0

Prθ0
(
V̄σ,τ (Xn) > 1/α

)
≤ α.
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Table 1: Simulation results.

(a) CP and AS results for the spCLRS and swCLRS 95% confidence sets.

CP n1 AS n1

θ0 100 1000 10000 100 1000 10000
spCLRS 1 1 1 1 1.43 0.46 0.14

5 1 1 1 4.60 1.49 0.47
10 1 1 1 8.32 2.57 0.82

swCLRS 1 1 1 1 1.28 0.40 0.12
5 1 0.99 1 4.13 1.29 0.40
10 1 1 1 7.40 2.31 0.73

(b) Proportion of rejections by the spCLRT and
swCLRT.

Rej. n1

c0 100 1000 10000
spCLRT 0 0 0 0

1 0.26 1 1
5 0.98 1 1

swCLRT 0 0 0 0
1 0.32 1 1
5 1 1 1

3 Simulation study
All numerical computation were conducted in the R programming environment [R Core Team, 2020]. The code for
the analyses are made available at hiendn/CompositeLikelihoodISI.

3.1 Bivariate distribution with exponential conditional distributions
We first consider a simulation study regarding data generated from the bivariate exponential distribution of Arnold
et al. [1999, Sec. 4.4]. Here the random variable X> = (X1, X2) has joint PDF

p (x; θ) = κ (θ) exp {−x1 − x2 − θx1x2} ,

where θ ≥ 0 is the parameter of interest, and κ (θ) = θ exp {−1/θ} /
∫∞

1/θ
w−1 exp (−w) dw is an intractable normal-

ization constant. However, the conditional PDFs of Xk|X3−k = x3−k, for k ∈ {1, 2}, can be specified by

p (xk|x3−k; θ) = fExp (xk; 1 + θx3−k) ,

where fExp (x;λ) = λ exp (−λx) is the PDF of the exponential distribution with rate λ > 0. Thus, we can conduct
inference regarding this DGP by considering ICLs of the form

pσ,τ (x; θ) = [p (x1|x2; θ)]
1/2

[p (x2|x1; θ)]
1/2 ,

where σ = 0 and τ = (1/2)1.
For data Xn with identical DGP to X, characterized by θ0 ∈ {1, 5, 10}, where n1 = n2 ∈ {100, 1000, 10000},

we consider the use of the spCLRS and swCLRS confidence sets at the α = 0.05 level. Here, each confidence set is
constructed using the maximum composite likelihood estimator (MCLE).

For each pair (n1, θ), we replicate the simulation r = 100 times and compute the coverage proportion (CP)
and average size (AS) of the confidence intervals for the two set constructions. Here, CP and AS are computed as
r−1

∑r
j=1 Jθ0 ∈ CjK and r−1

∑r
j=1 diam (Cj), where Cj is a stand-in for a confidence set constructed from the rth

replicate, J·K are Iverson brackets, and diam (·) is the metric set diameter operator.
The results are presented in Table 1(a). We observe that CP was near perfect, with only one scenario yielding a

confidence set that did not contain θ0. This supports Proposition 1, although it indicates that the confidence sets
are fairly conservative. We observe that AS is decreasing in n1, as expected, and increasing in θ0. We also find that
the swCLRS sets are smaller than the spCLRS sets, which suggests a more efficient use of the data.

3.2 Bivariate distribution with log-normal conditional distributions
We now consider the bivariate distribution of Sarabia et al. [2007], which is specified by the PDF

p (x;θ) =
κ (c)

2πσ1σ2x1x2
exp

{
−1

2

[(
log x1 − µ1

σ1

)2

+

(
log x2 − µ2

σ2

)2

+ c

(
log x1 − µ1

σ1

)2(
log x2 − µ2

σ2

)2
]}

, (1)

where θ> =
(
µ1, σ

2
1 , µ2, σ

2
2 , c
)
, with µ1, µ2 ∈ R, σ2

1 , σ
2
2 > 0, and c ≥ 0. Here, κ (c) =

√
2c/U

(
1/2, 1, (2c)

−1
)
, where

U (a, b, z) is the confluence hypergeometric function, defined as per Abramowitz and Stegun [1972, Eqn. 13.2.5].
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Like in the previous example, the normalizing constant of the joint PDF makes it intractable. However, we may
again specify the conditional PDFs of Xk|X3−k = x3−k, for k ∈ {1, 2}, by

p (xk|x3−k;θ) = fLN

(
xk;µk, σ

2
k/

{
1 + c

(
log x3−k − µ3−k

σ3−k

)2
})

,

where

fLN
(
x;µ, σ2

)
=

1

x
√

2πσ2
exp

{
−1

2

(
log x− µ

σ

)2
}

is the PDF of a log-normal distribution with location and scale parameters µ ∈ R and σ2 > 0, respectively. We can
use the conditional PDFs to conduct CL inference via the ICLs of the form

pσ,τ (x;θ) = [p (x1|x2;θ)]
1/2

[p (x2|x1;θ)]
1/2 ,

where σ = 0 and τ = (1/2)1.
We simulate data Xn, n1 = n2 ∈ {100, 1000, 10000} from DGPs that are characterized by the PDF (1), with

parameter vector θ0 = (2, 1, 2, 1, c0), where c0 ∈ {0, 1, 5}. For each pair (n1, c0), we use the spCLRT and swCLRT
to test the hypotheses H0 : c0 = 0 versus H1 : c0 > 0, at the α = 0.05 level. We repeat each simulation pair r = 100
times and compute the proportion of times the null hypothesis was rejected. Here, we again make use of the MCLE.

The results are reported in Table 1(b). Notice that no false rejections were made when c0 = 0, thus the size of
the test is conservatively controlled, as predicted by Proposition 2. We also see that the tests become increasingly
powerful as c0 increases and as n1 increases, as would be expected. There is some evidence that the swCLRT is
more powerful than the spCLRT, conforming to observations from the previous study.
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