
Zachary Zanussi

Supervised Text Classification with Leveled Homomorphic Encryption
Zachary Zanussi*1, Benjamin Santos1, Saeid Molladavoudi1

1 Statistics Canada, Ottawa, Canada.

Abstract:

Privacy concerns are a barrier to applying remote analytics, including machine learning,
on sensitive data via the cloud. In this work, we use a leveled fully Homomorphic Encryption
scheme to train an end-to-end supervised machine learning algorithm to classify texts while
protecting the privacy of the input data points. We train our single-layer neural network on a
large simulated dataset, providing a practical solution to a real-world multi-class text classifica-
tion task. To improve both accuracy and training time, we train an ensemble of such classifiers
in parallel using ciphertext packing.

Keywords: Privacy Preservation, Machine Learning, Encryption

1. Introduction:

Real time statistical products require access to real time data, however, access to real
time unencrypted transactional data may provide exposure to confidentiality threats and cyber-
security attacks. Even with secure cyber environments that are resistant to outside threats,
data is still at risk of misuse from insiders with proper data access clearances.

In recent years, there has been a significant growth in emerging privacy enhancing computa-
tion techniques that would potentially provide protection against such attacks while enabling
analytics, including Machine Learning (ML) tasks such as training and inference. Among the
existing techniques, fully Homomorphic Encryption (HE) is a prominent candidate to address
the privacy-related issues that arise in ML-as-a-service scenarios where the ML tasks, such
as training and inference, are delegated to an untrusted service provider, such as the cloud.

HE schemes are asymmetric crypto-systems that support homomorphic evaluation of arbitrary
computable functions on encrypted data. More specifically, HE allows arbitrary arithmetic op-
erations, such as addition and multiplication, to be performed on the encrypted data. That is,
one may apply these operations on encrypted data to obtain an encryption of the result of the
corresponding cleartext operation. The leveled HE schemes support a predetermined number
of operations, in particular multiplication, based on the target circuit.

A client seeks to train a neural network on sensitive data by outsourcing it to a cloud computer.
We assume this cloud is semi-honest, or honest-but-curious, so that it will follow any protocol
we assign it but it will attempt to learn anything it can in the process. The privacy goal is that
no new information leaks from the client’s private dataset to the server, beyond what can be
inferred from the trained model. After training, the cloud can either perform predictions for the
client, or can return the model to the client for local, unencrypted inference. Despite many ad-
vances and improvements in HE schemes, they have not been widely used in computationally
intensive ML tasks such as model training.

The high memory requirements for text classification are compounded by the computational
inflation HE imposes. Much of the work on this topic in the recent years has been transform-
ing these encrypted learning systems into practical algorithms that balance data security with

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000298



reasonable computation cost.

In this paper, we utilize the leveled HE scheme of Cheon, Kim, Kim & Song (2017) to train a
single layer neural network and make predictions for the ML text classification task. The data
we use in this proof-of-concept is a publicly available dataset of product descriptions that we
classify into an internationally recognized retail product classification system. We propose a
privacy-preserving classifier that is secure and practical. We first review some preliminaries.

Homomorphic Encryption. Focused research over the past decade has transformed Homo-
morphic Encryption (HE) into a full-fledged encryption scheme, capable of performing com-
putations on sensitive data without sacrificing privacy. Research teams are using it to per-
form machine learning, statistical analysis, and more. In fact, systems using HE are becom-
ing advanced enough to be deployed in real-world systems; for example, Raisaro, Troncoso-
Pastoriza, Misbach, Sousa et al. (2018).

The HE cloud computation paradigm is an asymmetric scheme that proceeds as follows. A
data source encrypts their data using someone’s public key; it is now impossible to access
it unless you hold the appropriate secret key. This data can now be safely transferred to the
cloud, even through insecure communication channels. Upon receipt, the cloud can perform
the desired calculations homomorphically on the encrypted values, even though it cannot read
the original input or any intermediate or final results. These final encrypted results can be sent
to the holder of the secret key (typically the client, or possibly a third party), who can then de-
crypt and read them. While there are multiple schemes that implement HE on numerical data,
we only consider the scheme of Cheon, Kim, Kim, and Song as it is designed for calculations
on real numbers. Due to the approximate nature of its calculations this scheme is perfect for
ML analysis. We have made extensive use of the CKKS scheme, so we describe the basics
presently.

CKKS Encryption Scheme. The Cheon–Kim–Kim–Song (CKKS) homomorphic encryption
scheme is designed for floating-point arithmetic, which makes it ideal for storing the weight ma-
trices of a neural network. In the proceeding, we give a high-level description of the scheme’s
interface; the interested reader should refer to Cheon, Kim, Kim & Song (2017) for a description
of the underlying mathematical structures and algorithms.

Suppose x is a vector of real numbers; we would like to encrypt x and perform homomorphic
operations on it. Using a public key, we can encrypt this entire vector into a single ciphertext,
denoted by [x]. That we encrypt a vector of values is a non-trivial detail; as we will see,
the way values are organized within the vector can affect performance and is referred to as
packing. We can think of the data encrypted in a ciphertext [x] as a vector of values of the form
x = (x0, x1, · · · , xk ). Each coordinate of this vector is called a slot.

Given two ciphertexts [x] and [y], we have access to homomorphic addition⊕ and multiplication
⊗ operations. These operations are performed slot-wise; that is, the homomorphic sum [x] ⊕
[y] results in a ciphertext [x + y] that encrypts a vector that is the component-wise sum of
the vectors x and y . The same is true for homomorphic multiplication. This highlights the
importance of the packing structure; values need to be correctly aligned during calculations.

We also have access to an operation called rotation. Simply put, we may rotate all the values
in x left or right by any number of slots. This relatively costly operation allows us to interact
values within a ciphertext with themselves; for example, repeatedly adding [x] to its rotation
results in a ciphertext total([x]) that encrypts the total

∑
i xi in every slot.

Every ciphertext exists on a level, and multiplications consume levels. This puts an upper
bound on the multiplicative depth of circuits that can be performed. Further, factors and sum-
mands must be on the same level in order to perform operations between them.

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000299



Text Classification. Natural Language Processing (NLP) as a field has benefited immensely
from the development of various ML algorithms in the previous decades. Text classification
is a task in NLP that takes unstructured input text and attempts to place it into one or more
classes. Applications include spam detection and sentiment analysis. Different approaches
(see Kowsari, Meimandi, Heidarysafa, Mendu et al. (2019)) have found success in a variety of
text classification problems. Many of them, such as deep neural networks or recurrent neural
networks such as long short-term memory networks, require deep circuits that have many
multiplications and are thus unsuitable for use with leveled HE.

On the other hand, simpler approaches such as bag-of-words and low-depth neural networks
provide cheaper solutions for the same text classification tasks at the cost of disregarding con-
text, grammar and word order. The bag-of-words model involves encoding a vector based on
the presence of words in the text. Even though simple, these approaches have been suc-
cessfully used as feature generation tools in information retrieval and document classification.
These simple techniques have provided an effective and HE-friendly approach to our super-
vised text classification problem.

2. Methodology:

In this section, we describe the methods we followed to implement our text classification
protocol, including the structure of the ensemble network and the intricacies introduced by
incorporating HE.

Network Structure. From prior experience in classifying text data, including the data that
we are targeting, a single layer network and a bag of words encoding is often sufficient for
an acceptable model performance. Working with such a shallow network is beneficial from a
computational complexity standpoint, especially in a leveled HE scheme such as CKKS.

To maximize performance with our leveled scheme, we train an ensemble. In an ensemble
model M, a number S > 1 of submodels Ms are each trained separately, and at prediction
time these models vote to determine the ensemble prediction. We packed several submodels
into a single ciphertext, which effectively trains multiple submodels in parallel. Each of our
submodels is a single layer neural network composed of multiplication by a weight matrix Ws.
We opt not to use an activation function, as the small accuracy gain was not found to be worth
the computational cost of including one.

Our training set consists of N pairs {x , y}, where x ∈ RM and y is a one-hot encoded vector
in RL representing one of L classes. Each modelMs consists of an L ×M weight matrix Ws,
randomly initialized with small real values. The weight matrix is multiplied by a data vector x to
obtain a vector of logits z =Ms(x) = Wsx ∈ RL. The ensemble of submodels performs a soft
voteM(x) =

∑
sMs(x) and then selects the index of the largest logit to obtain the ensemble

prediction.

We use Mean Squared Error as our loss function, and to perform model updates we compute

W (t+1)
s = W (t)

s – λ
(
W (t)

s xi – yi
)
· xi

T . (1)

We have accelerated our gradient descent protocol using a protocol due to Nesterov (2004).

Encrypted Gradient Descent Protocol. We present pseudo-code for our encrypted gradient
descent protocol for a single submodelMs in Algorithm 1. The ensemble training procedure is
a straightforward extension of this protocol. Data is encrypted in the form [x] where x is a vector
in RM , and the corresponding output labels are y ∈ {1, . . . , L}. The labels would typically be
one-hot encoded into a single vector, but in the encrypted protocol they are instead encrypted
into a series of ciphertexts {[y]l}Ll=1, where [y]l encrypts a vector of M ones if y = l and zeros

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000300



otherwise. The L×M weight matrix Ws is encrypted row-wise into ciphertexts {[Ws]l}Ll=1.

Algorithm 1: Encrypted Training Procedure
input : encrypted training dataset, saved to file

learning rate λ and momentum coefficient γ
output: trained weights, [Ws]l

1 for each update and l < L do
2 momentum look-forward, [Ws]l = [Ws]l – γ[v]l ;
3 load in data X ;
4 for each [x] in X do
5 propagate forward, [z]l = total([Ws]l ⊗ [x]) ;
6 subtract true labels, [dz]l = [z]l – [y]l ;
7 compute gradient, [dWs]xl = [dz]l ⊗ [x];
8 accumulate gradient, [dWs]l += [dWs]xl ;
9 multiply by learning rate, [dWs]l = λ

N [dWs]l ;
10 update weights, [Ws]l = [Ws]l – [dWs]l ;
11 update momentum, [v]l = γ[v]l + [dWs]l ;
12 preparation for next update;

In the ML literature, the term “epoch” typically refers to one pass over the dataset, which often
involves several model updates over batches of data. In the ciphertext model, we are not limited
by the number of epochs but rather the number of times the model is updated–see line 10 in
Algorithm 1. Thus, we measure the training progress of our model in terms of updates, rather
than epochs.

Data. Statistics Canada collects real-time data from major retailers for a variety of data prod-
ucts. These data, which include some identifiers, a product description, and the transaction
price, are commonly referred to as “scanner data”, named after the price scanners used to ring
a customer through checkout. This is a very valuable data source, used in the generation of,
among others, the Consumer Price Index (Statistics Canada. (2021)). The organization treats
this data as sensitive and endeavors to protect the privacy of it and the retailers that provide it.

The first step to processing this data is to classify the product descriptions into an interna-
tionally standardized system of product codes called North American Product Classification
System (NAPCS) codes. This system is used to classify different types of products for com-
parison. For example, one code may correspond to coffee and related products. Each entry in
the scanner data needs to be assigned one of these codes, based on the product description
given by the retailer. As a proof-of-concept, we replace the scanner data with a synthetic data
source, which allows us to conduct experiments without fear of putting the security of the data
at risk. This dataset is adapted from USDA’s FoodData Central (U.S. Department of Agricul-
ture (USDA)), and consists of 50,000 product descriptions from 5 different NAPCS codes.

The data were encoded using a word-level bag-of-words encoding. That is, each word used in
the dataset was enumerated and stored in a dictionary D, resulting in 4,030 distinct words. A
product description d was encoded into a 4,030-dimensional vector v , where vi = 1 if and only
if the i-th word appears in d . These vectors were padded with zeros to fit into the 4,096-slot
chunks during encryption.

3. Results:

In this section, we outline some of the details of the experiments we ran. First, we detail the
cloud compute environment we ran on. Next, we share some of the details of the different train-
ing procedures used. Finally, we share the timing and performance results of our encrypted
text classification protocol.

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000301



Compute Environment. All experiments were performed in the Microsoft Azure cloud, using
a virtual machine with 32 GB of memory and 8 virtual CPUs. We have also implemented
multithreading to utilize the multiple cores available. It should be noted that the cleartext model
does not utilize multithreading. We note that the cost to rent a cloud computer of this strength
for the time required to train our model is low enough that this sort of solution could be practical
for an individual or organization in possession of sensitive data.

We use the open-source library Microsoft SEAL (Simple Encrypted Arithmetic Library) which
has a native implementation of the CKKS HE scheme SEAL. The library is written in C++ and
provides a simple, low-level interface for initializing keys, encrypting data, and performing the
protocol.

Training. Our selection of encryption parameters allows us to perform 6 model updates. As
described above, we encode every data entry to a 4,096 dimensional vector so that 4 sub-
models could be packed into each 16,384-slot ciphertext. Of the 50,000 entry dataset, 40,000
entries were used for training and the remainder were used for testing.

We present two methods to overcome the circuit depth restriction imposed by HE. One involves
the cloud forwarding the spent model ciphertexts to the secret key holder, who can decrypt and
re-encrypt before returning them. This process requires communication between the cloud and
key holder several times throughout the training process. While inconvenient, we found this
burden to be reasonable while giving an appreciable increase in model accuracy; the amount
of data that needs to be exchanged is on the order of tens of megabytes.

We can eliminate this communication burden by widening our model. Indeed, by adding addi-
tional sets of weight ciphertexts, we can train as many submodels as we desire. For example,
rather than refreshing the same set of weights four times, we can train four different sets of
model ciphertexts, which trains in the same amount of time while eliminating the communica-
tion burden of refreshing. We have found this to be effective in practice, and it is closer to how
ensembles are typically used in the unencrypted literature, where the number of submodels
would be much larger than we consider here.

Performance Evaluation. The first step in the algorithm is to load and serialize the dataset
so that it can be transferred to the cloud. In the experiments presented here, we used S = 4
submodels. Thus the entire dataset of 50,000 was packed into 12,500 ciphertexts, each of
which takes 8 MB when serialized. In total, the training set, originally 14.9 MB, encrypts to
about 78.5 GB. Encrypting and serializing this set takes 14.6 minutes.

We ran experiments testing both of our methods for maximizing our encrypted model’s learning
opportunities. First, we test a “tall” model, where one set of model ciphertexts, packed with 4
submodels, is repeatedly trained and refreshed. Then we have a “wide” model, where we use
four sets of model ciphertexts, each packed with four submodels, each of which are trained on
different subsets of the data and never require refreshing.

We compare the results obtained by the encrypted network to those of the cleartext network.
The latter network is structured exactly like the former. For fairness, the same hyperparameter
tuning protocol was performed for both networks, and a batch size of 1000 was used for both.
We report the number of model updates that the cleartext model requires to match the max-
imum accuracy that our ciphertext model has obtained. We note, however, than when given
unlimited epochs, the cleartext network can obtain an accuracy of 87% in about 10 minutes of
training time, corresponding to about 80 epochs or 3,200 model updates. Results are listed in
Table 1.

4. Discussion and conclusion:

In this paper we present a private text classification protocol using HE that provides rea-

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000302



Network Submodels Model Updates Model Refreshes Training Time Test Accuracy

Cleartext 1 80 NA 15 s 74.3%

“Tall” Ciphertext 4 18 2 5.03 hr 74.2%

“Wide” Ciphertext 16 6× 4 0 6.97 hr 74.4%

Table 1: Comparison of results between the clear- and ciphertext models. The multiplication in “Model
Updates” is to emphasize the fact that there are 4 sets of model ciphertexts, each of which is updated
6 times. “Model Refreshes” refers to the number of decrypt–re-encrypt steps required in the run, as
discussed above.

sonable performance for a realistic use-case. Our main goal was to investigate the feasibility
of using HE in computationally intensive ML tasks, such as training a neural network while
preserving the confidentiality of the input dataset. Comparing to the cleartext experiments, our
results of experiments in the ciphertext domain prove that the performance degradation intro-
duced by the inherent noise as well as the approximate computation of HE is manageable. To
the best of our knowledge, our experiment is the largest encrypted text classification training
problem with neural networks undertaken so far.

With techniques such as packing and multithreading we managed to train an ensemble neural
network that learns from a large encrypted dataset for the supervised text classification. Our
solution is secure and practical in this context with the moderate compute power and tools that
are available on the cloud today. However, there are still a number of challenges that need
to be addressed to improve the performance of both the evaluation results and compute time.
For instance, utilizing the power of GPUs will result in a significantly improved compute time.
Heuristic search methods may lead to better hyperparameter tuning, as another major issue
that can lead to more effective models. Additionally, higher security parameters, such as higher
polynomial modulus, can help train deeper neural networks and more epochs during training
and hence, better evaluation results.

Finally, it is worth noting that HE, as a technology, has finally advanced to a point where we can
take an open-source library and solve a real problem in a reasonable amount of development
and compute time.

References:

Cheon, J.H.; Kim, A.; Kim, M. & Song, Y. (2017). Homomorphic encryption for arithmetic
of approximate numbers. In Advances in Cryptology–ASIACRYPT 2017, pages 409–437,
Springer.

Raisaro, J.L.; Troncoso-Pastoriza, J.R.; Misbach, M.; Sousa, J.S.; Pradervand, S.; Missiaglia,
E.; Michielin, O.; Ford, B. & Hubaux, J.P. (2018). Med Co: Enabling Secure and Privacy-
Preserving Exploration of Distributed Clinical and Genomic Data. IEEE/ACM transactions
on computational biology and bioinformatics, 16(4):1328–1341.

Kowsari, K.; Meimandi, K.J.; Heidarysafa, M.; Mendu, S.; Barnes, L.E. & Brown, D.E. (2019).
Text Classification Algorithms: A Survey. CoRR, abs/1904.08067.

Nesterov, Y. (2004). Introductory lectures on convex programming volume: A Basic course.
Springer.

Statistics Canada. (2021). Consumer Price Index.
https://www.statcan.gc.ca/eng/survey/business/2301.

U.S. Department of Agriculture (USDA), A.R.S. (2020). FoodData Central: USDA Global
Branded Food Products Database. fdc.nal.usda.gov.

SEAL (2020). Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL, Microsoft
Research, Redmond, WA.

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000303




