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Introduction
Linear mixed models are frequently used to analyze repeated
measures data, because they model flexibly the within-subject
correlation often present in this type of data. Usually for math-
ematical convenience, it is assumed that both random effect and
error term follow normal distributions. These restrictive assump-
tions, however, may result in a lack of robustness against depar-
tures from the normal distribution and invalid statistical infer-
ences, especially when the data show heavy tails and skewness.

Another common feature of these classes of LMMs is that the
error terms are conditionally independent. However, in longi-
tudinal studies, repeated measures are collected over time and
hence the error term tends to be serially correlated. Extending
the proposal of Lachos et al. [4], Schumacher et al. [7] pro-
posed a full likelihood approach via an EM-type algorithm for
fitting scale mixture of skew-normal linear mixed models (SMSN-
LMM) with serially correlated errors, considering some useful
correlation structures, such as autoregressive correlation of order
p (AR(p)) [3] and damped exponential correlation (DEC) [6].

The methods developed in Schumacher et al. [7] were im-
plemented in the R package skewlmm [8], available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=skewlmm. This work aims to briefly
introduced the proposed model and to describe the main fea-
tures of the skewlmm package, which offers an automatic fit of
SMSN-LMM and contain some tools for model evaluation, al-
lowing users to make robust inferences in practical longitudinal
data analysis.

Motivation
To motivate the need of a more flexible model, a real dataset
regarding reaction times in a sleep deprivation study, which is
available at the R package lme4, will be introduced. The average
reaction time per day for subjects was evaluated by Belenky et
al. [2] in a sleep deprivation study, where on day 0 the subjects
had their normal amount of sleep and starting that night they
were restricted to 3 hours of sleep per night for 9 days, and the
reaction time based on a series of tests was measured on each
day for each subject.

Figure 1 presents individual reaction time trajectories evolved
over time along with their mean profile, and results of the em-
pirical Bayes estimates of random effects obtained from fitting
a normal LMM, where it can be seem that the normal model
does not seem to be appropriate, since the quantile plots indi-
cate heavy tails.
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Figure 1: Trajectories of the reaction time in the sleep deprivation study and quantile plots
of the empirical Bayes estimates of random effects obtained from fitting a normal LMM.

Model formulation
The skew-normal (SNp(µ,Σ,λ)) distribution [1] can be defined
from

f (y) = 2φp(y; µ,Σ)Φ(A), y ∈ Rp,
where A = λ>Σ−1/2 (y− µ). If W ∼ SNp(0,Σ,λ), the scale
mixture of skew-normal (SMSNp(µ,Σ,λ;H)) class of distribu-
tions is the distribution of

Y = µ + κ(U)1/2W,

where U is a positive random variable with cdf H(·; ν), inde-
pendent of W, and κ(u) is a positive weight function. Thus, the
pdf of Y is

f (y) = 2
∫∞
0

φp(y; µ, κ(u)Σ)Φ(κ(u)−1/2A)dH(u; ν),

y ∈ Rp. Considering κ(u) = u−1, we get the skew-
normal/independent (SNI) class of distributions, the depending
of the distribution of U we can derived the skew-t (ST), skew-
slash (SSL), and the skew-contaminated normal (SCN) distribu-
tion. Furthermore, the symmetric versions of the distributions
are attained when λ = 0, when the SMSN reduces to the scale
mixture of normal (SMNp(µ,Σ;H)) [5] class.

Now, when a variable of interest together with several covariates
are repeatedly measured for each of n subjects at certain occa-
sions over a period of time. For the ith subject, i = 1, . . . , n,

let Yi be a ni× 1 vector of observed continuous responses. The
SMSN-LMM can be defined by considering

Yi = Xiβ + Zibi + εi, (1)

and 
bi
εi


ind.∼ SMSNq+ni




c∆
0

 ,

D 0
0 Σi

 ,

λ

0

 ;H
 , (2)

where Xi of dimension ni× l is the design matrix corresponding
to the fixed effects, β of dimension l×1 is a vector of fixed effects,
Zi of dimension ni× q is the design matrix corresponding to the
q×1 random effects vector bi, εi of dimension ni×1 is the vector
of random errors, c = c(ν) = −

√
2/πk1, with k1 = E{U−1/2},

∆ = D1/2δ, and δ = λ/
√
1 + λ>λ.

The q × q random effects scale matrix D can be unstructured
or diagonal, and we consider the ni × ni error scale matrix as
Σi = σ2

eRi, with Ri = Ri(φ), φ = (φ1, . . . , φp)>, being one of
the following:
• Uncorrelated (UNC): Ri = Ini.
• Autoregressive dependence of order p (AR(p)):

Ri = Ri(φ) = 1
1− φ1ρ1 − . . .− φpρp

[ρ|r−s|],

where ρ1, . . . , ρp are the theoretical autocorrelations of the
process and functions of φ = (φ1, . . . , φp)>, and they satisfy
the Yule-Walker equations.

• Damped exponential correlation (DEC):

Ri = Ri(φ1, φ2, ti) =
φ|tij−tik|

φ2
1

 , 0 < φ1 < 1, φ2 > 0.

The SMSN-LMM has a convenient hierarchical representation,
which is useful for the implementation of an EM-type algorithm,
and therefore the package skewlmm uses the ECME algorithm
for parameter estimation through the functions smsn.lmm and
smn.lmm, where the latter refers to the special case of λ = 0.
An introduction to the package and its use to fit a SMSN-LMM
to the sleep study data is given next.

The R package skewlmm
The package skewlmm provides tools for fitting and evaluat-
ing the SMSN-LMM given in (1)-(2) in R using S3 class, with a
user-friendly interface.

The basic syntax of the main functions is as follows:

smsn.lmm(data, formFixed, groupVar, formRandom,
depStruct, distr, covRandom, ...)

smn.lmm(data, formFixed, groupVar, formRandom,
depStruct, distr, covRandom, ...)

where
• data is a data frame containing all the variables to be used in

the model.
• formFixed is a two-sided linear formula object describing the

fixed effects part of the model.
• groupVar is a character containing the name of the variable

which represents the subjects or groups in data.
• formRandom is an one-sided linear formula object describing

the random effects part of the model.
• depStruct is a character indicating which dependence struc-

ture should be used.
• distr is a character indicating which distribution should be

used.
• covRandom is either "pdSymm" or "pdDiag".

The functions return an object of the class SMSN and SMN, re-
spectively, containing a list of elements. Additionally, some esti-
mation options can be controlled using the argument control
with the function lmmControl.

For example, a SL-LMM and a SSL-LMM, respectively, can be
fitted given below. Additionally, a likelihood ratio test for testing
H0 : λ = 0 can be performed using the lr.test function.
fit1<-smn.lmm(data = sleepstudy, formFixed = Reaction˜Dayst,distr = 'sl',

formRandom = ˜Dayst, groupVar = "Subject",
control = lmmControl(quiet = TRUE))

fitskew1<-smsn.lmm(data = sleepstudy, formFixed = Reaction˜Dayst,distr = 'ssl',
formRandom = ˜Dayst, groupVar = "Subject",
control = lmmControl(quiet = TRUE))

lr.test(fit1,fitskew1)

## Model selection criteria:
## logLik AIC BIC
## fit1 -861.088 1736.175 1758.526
## fitskew1 -860.745 1739.490 1768.226
##
## Likelihood-ratio Test
## chi-square statistics = 0.6854122
## df = 2
## p-value = 0.7098468
## The null hypothesis that both models represent the
## data equally well is not rejected at level 0.05

To evaluate the adequacy of the distributional assumption, a
Healy-type plot can be used as illustrated next, where the gain in

considering a heavy-tailed distribution for modeling this dataset
is evidenced.
grid.arrange(healy.plot(fit0,calcCI = TRUE),

healy.plot(fit1,calcCI = TRUE),nrow=1)
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Figure 2: Healy-type plots.

Furthermore, to check if the uncorrelation assumption that is
used by default is appropriate, a possible approach is to use the
function update to refit the model considering different corre-
lation structures and then compare AIC and BIC for selecting
the most appropriate model. Since the data are equally spaced
and sorted by time, the use of timeVar in here is optional (the
function will use the position if timeVar is not provided).

fitar1<-update(fit1, depStruct = "ARp",
pAR = 1)

fitar2<-update(fit1, depStruct = "ARp",
pAR = 2)

fitDEC<-update(fit1, depStruct = "DEC",
timeVar = "Days")

depStruct AIC BIC
UNC 1736.2 1758.5
AR(1) 1716.8 1742.3
AR(2) 1717.3 1746.0
DEC 1718.6 1747.3

Additionally, we can compute the empirical autocorrelation
function (ACF) for standardized marginal residuals, which at
lag l can be defined as

ρ̂(l) =
∑n
i=1

∑
{(j,k)|tk−tj=l} ritjritk/N(l)
∑n
i=1

∑ni
j=1 r

2
itj/N(0) ,

where ri = Υ̂−1/2
i

(
yi −Xiβ̂

)
is the standardized marginal

residual vector for subject i, with Υi = Var(Yi), and N(·) is the
number of pairs used in the respective numerator summation.
grid.arrange(plot(acfresid(fit1, calcCI = TRUE, maxLag = 6))+

ggtitle("UNC-SL-LMM"),
plot(acfresid(fitar1, calcCI = TRUE, maxLag = 6))+

ggtitle("AR(1)-SL-LMM"), nrow=1)
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Figure 3: ACF plots.

Finally, methods such as print, summary, plot, fitted,
residuals and predict are implemented, and an example of
its use is given below.
plot(fitar1, type = "normalized") + ggtitle('AR(1)-SL-LMM')
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Figure 4: Plotting a fitted object.
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