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Abstract 
The treatment of one inflation in estimating the size of an elusive population has received an 
increasing attention from researchers in recent years. The inflation of counts "one", that is 
the presence of an excess of "one"s, larger than compatible with any distributional 
assumption, deserves specific attention due to its effect on usual estimators for the 
population size. One-inflation may lead to overestimation of the usual estimators when not 
accounted for, while in general, when the observed counting model presents other sources 
of heterogeneity and this is ignored by the estimation procedure, it may produce severe 
underestimation in the population size. In this paper we propose a Bayesian approach that 
considers one inflation in count data models for capture recapture.  An application to real 
data for the estimate of the size of some illegal populations is used to illustrate the proposed 
methodology. 
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1. Introduction

A popular methodology to estimate the size of hidden populations is the capture-recapture 
methods, originally used to estimate animal abundance. In capture–recapture, data can be 
collected at specific time points, therefore for each unit seen at least once there is a capture 
history.  The data used in this work are a specific form of capture–recapture data. We collect 
data in continuous time hence we have only the total number of times a unit is captured.  
By means of an observational mechanism, i.e a register, a trapping system, a set of 
interviewers, a diagnostic devise, we can identify some population units and follow them in a 
specific time span. In this way, the observational mechanism provides us a list of population 
units with the count (i.e. the number of times) that they appear in the list. In the list we can 
observe individuals who are observed/captured 1, 2, 3, ..., times, however we cannot 
observe units not caught by the observational system. Hence, the list can be considered as 
incomplete and we want to estimate the hidden part of the population, i.e. the size of it not 
reported by our observational mechanism. Capture recapture data in this setting are usually 
called repeated counting data. To estimate the population size, one needs to model the 
counting process of observation/capturing. 

In this framework, an increasing attention has been devoted to the inflation of counts "one", 
i.e. the presence of an excess of "one"s , larger than compatible with any distributional
assumption, see Godwin and Böhning (2017), Godwin (2017), Godwin (2019), Böhning,
Kaskasamkul, and van der Heijden, (2018), Böhning and van der Heijden (2019), Böhning
and Friedl (2021).
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One-inflation can occur for different reasons; for instance, we observe one-inflation when 
some units of the population cannot be captured anymore after the first capture. This may be 
the case of some wild animal populations, when the animals that experienced the capture 
once, find it so unpleasant that some of them develop the desire and/or ability to avoid 
subsequent captures. A similar reasoning can be applied also to human populations, 
particularly when the first capture consists of law enforcement, involves imprisonment or 
reveals an undesirable characteristic/behaviour. See Godwin and Böhning (2017) for a rich 
discussion on justifications and conditions for one-inflation in capture-recapture, also 
including an interpretation of one-inflation as limiting case of the so-called "trap shy" 
behavioural model. 
 
One-inflation deserves specific attention due to its effect on usual estimators for population 
size. In general, when the observed counting model presents heterogeneity and this is 
ignored by the estimation procedure, it may produce severe underestimation in the 
population size. On the contrary, one-inflation may lead to overestimation of the usual 
estimators when not accounted for. This is true even for the well-known lower bound Chao 
estimator, which may severely overestimate the population size in the presence of one-
inflation, as discussed in Chiu and Chao (2016) and in Böhning, Kaskasamkul, and van der 
Heijden, (2018).  
 
In this paper we propose a Bayesian approach to count data models with one-inflation, for 
use in Horvitz–Thompson estimator of the population size. Under given conditions, the 
Bayesian approach results in population size estimates similar to the maximum likelihood 
ones, with the advantage of producing the credible intervals of the estimates as a by-product 
of the estimation procedure. Another advantage of the Bayesian approach is to allow 
incorporating previous knowledge on the hidden size of the population in the analysis, in the 
very favourable case in which this information is available to the analyst. Moreover, the 
Bayesian analysis allows testing the one-inflation assumption in a very natural way. 
 
We apply our Bayesian proposals to real data for estimating the size of some illegal 
population, using also some popular dataset available from the literature on capture-
recapture, where the issue of one-inflation has been recognised.  
 
2. Methodology 
 
According to the standard formulation, consider a closed population (no birth, death or 
migration) of size N. For each unit in the population, let Y be a random variable taking value 
j=0, 1, 2, … if the individual is observed/captured j times. We only observe the n individuals, 
such that j>0, with n ≤N.  
 
Let 𝑝𝑗 = 𝑃𝑟𝑜𝑏(𝑌 = 𝑗)  denote  the probability of a unit being captured j times, and 𝑛𝑗 denote 

the number of individuals observed j times, that is 𝑛𝑗 is the frequency of the count j. 

 Our interest is to estimate the unknown 𝑛0 = 𝑁 − 𝑛 units remain unobserved, actually the 
units observed in zero counts 𝑛0, and consequently N, on the basis of some model for the 

observed  𝑛𝑗. 

 
The Horvitz-Thompson estimator arises from the sum of both the unobserved and the 
observed cases n, by the solution of the estimating equation  
  

𝑁 = 𝑁𝑝0 + 𝑁(1 − 𝑝0) = 𝑛/(1 − 𝑝0) 
 
 where 𝑁(1 − 𝑝0) is the expected number of cases identified by the capture mechanism, 
estimated by the observed cases n. In the Horvitz–Thompson estimator, the probability of 
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being observed 0 times, 𝑝0, needs to be estimated by an appropriate model that describe the 
observed zero-truncated counts. 
  
Note that Bayesian inference for the population size N is straightforward under standard 
models for Y. Suppose for example that Y is Poisson distributed with mean λ. Let 𝑦 =
(𝑦1, … , 𝑦𝑛) be the observed number of captures for the n observed units and let s be their 

sum 𝑠 = ∑  𝑦𝑖
𝑛
𝑖=1   

The likelihood function for 𝜃 = (𝜆,𝑁) is given by 
 

 𝑓(𝑦, 𝑛| 𝜆, 𝑁) =  (
𝑁
𝑛
) 𝑒𝑥𝑝{−𝜆 (𝑁 − 𝑛)} 𝜆𝑛 𝑒𝑥𝑝{−𝜆 𝑠} 

  
Assuming a priori 𝑝(𝑁) ∝ 1/𝑁 and 𝜆 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑎𝑙 , 𝑏𝑙) and setting 𝑛0 = 𝑁 − 𝑛 the posterior 
for(𝜆, 𝑛0) is given by 

 𝑝(𝑛, 𝜆 |𝑦, 𝑛)  ∝  (
𝑛0 + 𝑛
𝑛

) 𝑒𝑥𝑝{−𝜆 𝑛0} 𝜆
𝑛+𝑎𝑙  𝑒𝑥𝑝{−𝜆 (𝑠 + 𝑏𝑙)}

1

𝑛0 + 𝑛
 

which can be easily simulated via a Gibbs sampler. In fact, the conditional distribution of 
𝜆 |𝑛0, 𝑦, 𝑛 is a Gamma  with parameters  𝑛 + 𝑎𝑙, 𝑠 + 𝑏𝑙 and the conditional distribution  

𝑛0 |𝜆, 𝑦, 𝑛 is  a Negative Binomial with size parameters equal to n and probability 𝑒𝑥𝑝{−𝜆 }.  
 
To include the one-inflation in our model, we assume that in our population a specific 
behavioural mechanism is acting. That is, an individual that without that mechanism would 
face multiple captures, now has a positive probability ω of being captured just once. 
 
Let Y denote the observed number of captures for a unit, and Y* the latent value we would 
observe without the behavioural mechanism. The two variables are linked by means of the 
following infinite transition matrix 
 
 
 
 

P= 
 
 
 
 
where the (𝑘, 𝑗) − 𝑡ℎ element represents the conditional probability 𝑃(𝑌 = 𝑗|𝑌∗ = 𝑘). Note 

that the first row comprises the probabilities {𝑝0𝑗}𝑗=0,1,… and the first column the probabilities 

{𝑝𝑘0}𝑘=0,1,….  

 
Let 𝑓(𝑘|𝜃) = 𝑃(𝑌∗ = 𝑘|𝜃) be the probability distribution, depending on some parameter θ, of 
the number of captures without the behaviour effect, and let F(θ) denote the associated c.d.f. 
Then, the resulting distribution for Y is the one-inflated model defined as follows: 
 

𝑃(𝑌 = 𝑗) = {

𝑓(0|𝜃) 𝑖𝑓 𝑗 = 0

(1 − 𝜔)𝑓(1|𝜃) + 𝜔(1 − 𝑓(0|𝜃)) 𝑖𝑓 𝑗 = 1
(1 − 𝜔)𝑓(𝑗|𝜃) 𝑖𝑓 𝑗 > 1

 

 
The conditional distribution of Y* when Y=j is concentrated on j when 𝑗 ≠  1, while, when j=1, 
we have: 
 

1 0 0 0 0 … 

0 1 0 0 0 … 

0 ω 1- ω 0 0 … 

0 ω 0 1- ω 0 … 

0 ω 0 0 1- ω … 

… … … … … … 
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𝑃(𝑌∗ = 𝑘 | 𝑌 = 1) =

{
 
 

 
 

0 𝑖𝑓 𝑘 = 0

𝑓(1|𝜃)

𝑓(1|𝜃) + 𝜔(1 − 𝐹(1|𝜃)
𝑖𝑓 𝑘 = 1

𝜔𝑓(𝑘|𝜃)

𝑓(1|𝜃) + 𝜔(1 − 𝐹(1|𝜃)
𝑖𝑓 𝑘 > 1

 

 
This setting allows for different specifications for our count data Y*, i.e. 𝑓(𝜃) can be a 
Poisson density, as in Godwin and Böhning (2017), or alternatively Y* can follow a Negative 
Binomial distribution, as in Godwin (2107). In both cases, a Gibbs sampler can be outlined 
for simulating from the conditional distributions of 𝜔, 𝑌∗, 𝑎𝑛𝑑  𝜃.  
 
3. Result 
 
In this section, we apply the proposed Bayesian model to a selection of popular case-studies 
in capture recapture literature. 
The following real cases are considered:  

1. the number of prostitutes in Vancouver, presented in Rossmo and Routledge (1990);  
2. opiate users in Rotterdam, already analysed by Cruyff and van der Heijden (2008); 
3. heroin users in Bangkok, from Böhning et al. (2004) Viwatwongkasem et al (2008). 

 
The evidence of one inflation in these data sets have been largely discussed already in 
Godwin and Böhining (2017) and Godwin (2017), where results from maximum likelihood 
analysis under Poisson and Negative Binomial distribution, respectively, can be found and 
compared with the results presented in this section. 
 
Table 1 shows the results from our Bayesian models for the selected case studies, reporting 
the posterior modes and credible intervals of the population sizes, N, as well as the posterior 
medians of the model parameters. In the table, we indicate with λ the parameter of the 
Poisson distribution. For the Negative Binomial distribution, we adopt the size and probability 
parameterization, indicated with r and p, respectively. The one-inflated models are indicated 
with the suffix ‘OI’. In table 1, we show also the results from a Bayesian analysis assuming 
the Poisson distribution and ignoring the one-inflation, to show the over-estimation occurring 
when one-inflation is ignored.  
 
Table 1. The posterior mode and credible intervals for the population size N, posterior 
median for ω and model parameters, for some popular real cases analysed 
 

Prostitutes in 
Vancouver 

N HPD(N) ω λ r p 

 Poisson 1237 1178 - 1301  1.253   

 OIP 1016 980 - 1057 0.439 2.037   

 OINB 1304 1100 - 2174 0.274  1.947 0.604    

Opiate users in 
Rotterdam 

N HPD(N) ω λ r p 

 Poisson 2929 2832 - 3038  1.174   

 OIP 2500 2418 - 2587 0.336 1.663   

 OINB 3769 3140 - 5533 0.086  1.397 0.618     

Heroin users in 
Bangkok 

N HPD(N) ω λ r p 

 Poisson 9453 9427 - 9477  4.134   

 OIP 9364 9349 - 9380 0.207 5.004   

 OINB 10865 10629 - 11111 0.055  1.612 0.300    
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4. Discussion and Conclusion 
 
In this paper we propose a Bayesian approach to count data models with one-inflation, for 
use in Horvitz–Thompson estimator of the population size. The one-inflation can introduce 
severe overestimation in traditional capture-recapture estimator, if not properly accounted 
for. Our Bayesian approach results in population size estimates similar to the maximum 
likelihood ones, under non informative prior distribution, with the advantage of producing the 
credible intervals of the estimates as a by-product of the estimation procedure. Another 
advantage of the Bayesian approach is to allow incorporating previous knowledge on the 
hidden size of the population in the analysis, in the very favourable case in which this 
information is available to the analyst. The role of prior distributions is topic for further 
investigation. 
  
We apply our Bayesian proposals to real data for estimating the size of some illegal 
population, using also some popular dataset available from the literature on capture-
recapture, where the issue of one-inflation has been recognised. The properties of our model 
are highlighted also by a simulation study, not presented in these proceedings for the sake 
of brevity.  
 
A possible extension of this work aims at incorporating, in a natural way, a Bayesian test for 
the one-inflation assumption.  
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