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Abstract

We consider branching random walks with two types of particles on multidimensional lat-
tice. The underlying random walks for both types of particles are symmetric, homogeneous in 
space and irreducible. We assume that particles can die or produce offspring of both types at 
some lattice points, called branching sources. We consider the case when branching sources are 
located at every lattice point and the case when there is one branching source at the origin. We 
consider subpopulations of particles generated by a single particle of each type. We obtained 
the asymptotic behaviour for the first moments of subpopulations in both cases under different 
assumptions.
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1. Introduction
The theory of branching random walks (BRWs) is widely studied for the last thirty years (see e.g.
Gorostiza and Wakolbinger (1991), Albeverio et al. (1998)). BRWs can be used in describing pro-
cesses with birth, death and transport of particles. However, results obtained in the theory of BRWs
were mostly dedicated to the processes with one type of particle (see e.g. Getan et al. (2016),
Molchanov and Whitmeyer (2017)). In contrast to the previous works in our paper we consider
continuous-time symmetric multi-type branching processes on multidimensional lattice Zd, d ∈ N.
The theory of multi-type branching processes was studied and described by different mathematicians
(see e.g. Sevastyanov (1971)). In present work we mainly pay attention to BRWs with two types of
particles with different configurations of generation centers, called branching sources, where particles
can either die or produce offspring of both types.

2. BRW Model
We study continuos-time BRWs on Zd, d ∈ N. The objects of the study are subpopulations of the
particles which can be represented as the following column-vectors:

ni(t, x, y) = [ni1(t, x, y), ni2(t, x, y)]T , i = 1, 2.

Here ni(t, x, y) is the vector of particles at the point y ∈ Zd, generated by a single particle of type i
which at time moment t = 0 was at the site x ∈ Zd. Its components nij(t, x, y) are the numbers of
particles at the point y of type j, generated by a single particle of type i at x at the moment t = 0.
The initial condition is nij(0, x, y) = δi(j)δx(y), where δu(v) is the Kronecker function on Zd (or R),
that is if u, v ∈ Zd (or R)

δu(v) =

{
1, u = v;

0, u 6= v.

Now consider what evolutions can happen with each particle. We assume that processes we study
are Markov processes, so that each particle spends at every lattice point exponentionally distributed
random time up to the first transformation. Then there are several evolutions. Firstly, each particle
can die with the probability µidt, i = 1, 2 during the small time period dt. Here µi > 0 is the
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mortality rate. Secondly, each particle can produce offspring of both types. We assume that the
parental particle dies when it produces its offspring. Let βi(k, l), i = 1, 2, k + l > 2 be the intensity
of particle of type i produce k offspring of the first type and l offspring of the second type. Thus,
the corresponding probability to produce offspring during the time period dt is βi(k, l)dt. Then we
define the corresponding generating function of branching (without particle death) for i = 1, 2 (see
Sevastyanov (1971)):

Fi(z1, z2) =
∑
k+l>2

zk1z
l
2βi(k, l).

We assume that at every branching source particles of both types can produce their offspring. In
what follows we consider two configurations of branching sources. In the first model we assume that
branching sources are located at every lattice point. In the second model we consider the case when
there is only one branching source. Without limitation of generality we can say that the branching
source is located at the origin.
Finally, we assume that particles can jump between the lattice points. Let κiai(x, y)dt, i = 1, 2 be
the probability of the particle of type i jump from the point x ∈ Zd to the point y ∈ Zd during
the time period dt. Here κi > 0 is the diffusion coefficient. We also assume that the following
conditions for intensities ai(x, y), i = 1, 2 hold for all x, y ∈ Zd: ai(x, y) = ai(y, x) (symmetry),
ai(x, y) = ai(x−y, 0) (space homogeneity). This two conditions allow us to replace the function ai(·, ·)
on Zd×Zd with the function ai(·) on Zd by the following formula ai(x, y) = ai(y−x). Also we assume
that underlying random walk for type i = 1, 2 is irreducible, so that span{v ∈ Zd : ai(v) > 0} = Zd.
Besides,

∑
v 6=0 ai(v) = −ai(0) = 1. Then the generator of underlying random walk has the following

form:
Liψ(x) = κi

∑
v

[
ψ(x+ v)− ψ(x)

]
ai(v).

In paper we are going to study the behaviour of random variables nij(t, x, y), i, j = 1, 2, x, y ∈ Zd
in terms of their moments. We mainly pay attention to the bevaviour of the first moments of each
subpopulation which we define as mij(t, x, y) = Enij(t, x, y). To obtain the results for the moments
we introduce the following generating function of subpopulation nij(t, x, y). Given z = (z1, z2) we
define

Φi(t, x, y; z) = Ez
ni1(t,x,y)
1 z

ni2(t,x,y)
2 .

Later on we consider the generating function and the first moments in two cases with different con-
figurations of branching sources.

3. BRW with Infinite Number of Branching Sources
Firstly, we consider the case when branching sources are located at every lattice point. Then in
Makarova et al. (2020) there were obtained the differential equations of Φi(t, x, y; z) and mij(t, x, y).
As we are interested in studying the moments we shall consider the differential equation ofmij(t, x, y).

Lemma 0.1. Let βi(k, l) 6 ck+l
0
k!l! , i = 1, 2, k + l > 2. Then, for each i, j = 1, 2, the functions

mij(t, x, y) satisfy the differential equation

∂mij(t, x, y)

∂t
= Limij(t, x, y)− µimij(t, x, y)−

∑
k+l>2

βi(k, l)mij(t, x, y)

+
∑
k+l>2

βi(k, l)(km1j(t, x, y) + lm2j(t, x, y));

mij(0, x, y) = δi(j)δx(y).
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In case when generators of underlying random walks are equal, so that L1 = L2, there were found
explicit solutions of the equations formij(t, x, y). Here we want to consider the case when generators
are different and have some additional properties.
Assume that the intensities a1(·) and a2(·) satisfy the following conditions:∑

v

a1(v)|v|2 <∞, a2(u) ∼ H(u/|u|)
|u|d+α

, α ∈ (0, 2), (1)

where | · | is the vector norm in Rd and H(·) is positive symmetric continuous function on {u ∈ Rd :
|u| = 1}. In this case we say that the underlying random walk for the particles of the first type has
finite variance of jumps and for the particles of the second type — infinite variance of jumps.
Here in case of fixed space coordinates x, y ∈ Zd we can obtain the asymptotic behaviour for
mij(t, x, y), i, j = 1, 2 as t tends to infinity. We shal consider the results with regard to values

b :=
∑
k+l>2

lβ1(k, l) > 0, c =
∑
k+l>2

kβ2(k, l) > 0.

We study three cases

b = 0, c > 0 or b > 0, c = 0 or b > 0, c > 0.

Let
r1 =

∑
k+l>2

(k − 1)β1(k, l)− µ1, r2 =
∑
k+l>2

(l − 1)β2(k, l)− µ2.

Then we obtain the following results with the usage of discrete Fourier transform which has the form

f̂(θ) =
∑
u∈Zd

ei(θ,u)f(u), θ ∈ [−π, π]d.

Case b = 0, c > 0. Here as t→∞

m11(t, x, y) ∼ e−µ1t γd
td/2

; m21(t, x, y) = 0;

m22(t, x, y) ∼ e−µ2t
γd,α

td/α
; m12(t, x, y) = 0,

where γd and γd,α are positive constatns which depend on the lattice dimension.
Case b = 0, c > 0. Here as t→∞

m11(t, x, y) ∼ e−µ1t γd
td/2

; m21(t, x, y) ∼

{
ce−µ1t γd

td/2−1 , if − µ1 = r2,
c

−µ1−r2

(
e−µ1t − er2t

) γd
td/2

, if − µ1 6= r2;
;

m22(t, x, y) ∼ er2t
γd,α

td/α
; m12(t, x, y) = 0.

Case b > 0, c = 0. Here as t→∞

m11(t, x, y) ∼ er1t γd
td/2

; m21(t, x, y) = 0;

m22(t, x, y) ∼ e−µ2t
γd,α

td/α
; m12(t, x, y) ∼

{
be−µ2t γd

td/2−1 , if r1 = −µ2,
b

r1+µ2

(
er1t − e−µ2t

) γd
td/2

, if r1 6= −µ2;
.
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Case b > 0, c > 0. Here as t→∞

m11(t, x, y) ∼ eC1t

2C2

((
r1 − C1 + C2

)
eC2t +

(
C1 + C2 − r1

)
e−C2t

) γd
td/2

;

m21(t, x, y) ∼ ceC1t

2C2

(
eC2t − e−C2)t

) γd
td/2

;

m22(t, x, y) ∼ eC1t

2C2

(
C1 + C2 − r1

)
eC2t +

(
C1 − C2 − r1

)
e−C2t

) γd
td/2

;

m12(t, x, y) ∼ beC1t

2C2

(
eC2t − e−C2t

) γd
td/2

,

where

C1 =
r1 + r2

2
, C2 =

((r1 − r2)2 + 4bc)1/2

2
.

4. BRW with a Single Branching Source
In case when we have one branching source at the origin the differential equation for mij(t, x, y)
obtained in Lemma 3.1 is similar.

Lemma 0.2. Let βi(k, l) 6
ck+l
0
k!l! , for all k+l > 2. Then, for each i, j = 1, 2, the functions mij(t, x, y)

satisfy the differential equation

∂mij(t, x, y)

∂t
= Limij(t, x, y) + δ0(x)

(
−µimij(t, x, y)−

∑
k+l>2

βi(k, l)mij(t, x, y)

+
∑
k+l>2

βi(k, l)(km1j(t, x, y) + lm2j(t, x, y))
)

;

mij(0, x, y) = δi(j)δx(y).

In this case we obtain the results with the usage of Laplace transform which has the form

Lf(λ) =

∫ ∞
0

e−λtf(t)dt, λ > 0.

Let pi(t, x, y), i = 1, 2 be the solution of the following Cauchy problems:

∂pi(t, x, y)

∂t
= Lipi(t, x, y), pi(0, x, y) = δx(y).

Define the Green functions of pi(t, x, y), i = 1, 2 as follows

Gλ,i(x, y) := Lpi(λ, x, y) =

∫ ∞
0

e−λtpi(t, x, y)dt.

To simplify the formulae we assume that µ1 = µ2 = 0, β1(1, 1) = β2(1, 1) =: β. Let

β2Gλ,1(0, 0)Gλ,2(0, 0) 6= 1.
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Then applying the Laplace and discrete Fourier transforms to the differential equations formij(t, x, y),
i, j = 1, 2, we have

Lmii(λ, x, y) =
β2Gλ,i(x, 0)Gλ,i(0, y)Gλ,k(0, 0)

1− β2Gλ,1(0, 0)Gλ,2(0, 0)
+Gλ,i(x, y), k = 1, 2, k 6= i;

Lmij(λ, x, y) =
βGλ,i(x, 0)Gλ,j(0, y)

1− β2Gλ,1(0, 0)Gλ,2(0, 0)
, i 6= j

;

As in the previous Section we consider the case when the intensities ai(·), i = 1, 2 satisfy (1). Here we
found the representation of Laplace transform with regard to the lattice dimension d and parameter
α ∈ (0, 2) as λ→ 0. There were eight different cases. Here we present four cases.
Case 1. d = 1, α ∈ (0, 1/2]. As λ→ 0

Lm11(λ, x, y) ∼ − 1

β2Gλ,2(0, 0)
; Lm22(λ, x, y) ∼ −

√
λ

β2γ1
√
π

;

Lm21(λ, x, y) ∼ Lm12(λ, x, y) ∼ − 1

β
.

Case 2. d = 1, α = 1. As λ→ 0

Lm11(λ, x, y) ∼ 1

β2γ1,1 lnλ
; Lm22(λ, x, y) ∼ − γ1,1 lnλ

β2γ1
√
π

Lm21(λ, x, y) ∼ Lm12(λ, x, y) ∼ −βγ1
√
πγ1,1 lnλ√
λ

.

Case 3. d = 2, α ∈ [1, 2). As λ→ 0

Lm11(λ, x, y) ∼ −γ2 lnλ; Lm22(λ, x, y) ∼ Gλ,2(0, 0)

Lm21(λ, x, y) ∼ Lm12(λ, x, y) ∼ −Gλ,2(0, 0)βγ2 lnλ.

Case 4. d = 3, α ∈ [3/2, 1) or d > 4, α ∈ (0, 2). As λ→ 0

Lm11(λ, x, y) ∼
Gλ,1(0, 0)

1− β2Gλ,1(0, 0)Gλ,2(0, 0)
; Lm22(λ, x, y) ∼

Gλ,2(0, 0)

1− β2Gλ,1(0, 0)Gλ,2(0, 0)
;

Lm21(λ, x, y) ∼ Lm12(λ, x, y) ∼
βGλ,1(0, 0)Gλ,2(0, 0)

1− β2Gλ,1(0, 0)Gλ,2(0, 0)
.
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