
Empirical analysis of branching random walks in random medium

Kutsenko Vladimira,∗, Elena Yarovayaa

aLomonosov Moscow State University, Moscow, Russian Federation

Abstract

This paper is devoted to the analysis of the time-continuous branching random walks in a
random medium. Similar models are used in statistical physics, chemical kinetics, and population
genetics. In the last twenty years, several limit theorems have been obtained for such processes.
However, these theorems have some limitations, and the investigation of branching random walks
on finite times seems impossible. This paper presents algorithms for the simulation of branching
random walks in a random medium based on the Monte Carlo method. We obtained numerical
estimations for models with various assumptions about the field structure, in particular for different
branching potentials.
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1. Introduction

Problems related to the intermittency in a random medium seem to have been first considered
by Zeldovich et al in [1]. These problems were generalized and developed in two fundamental works
by Gärtner and Molchanov in [2, 3]. In these works Gärtner and Molchanov strictly formalized the
concept of intermittency and developed tools for studying the Anderson operator. These tools, in
turn, make it possible to prove limit theorems for homogeneous branchind random walks (BRW) in
a random medium, were done by Albeverio et al in [4]. This paper is currently the most complete
and detailed analysis of BRW in a homogeneous random medium. An arising continuation of the
results for the case of an non-homogeneous field was made in [5]. In addition we should mention a
short course of lectures on random media by Molchanov [6], in which the main results of the theory
of random media are presented in a concise form.

The structure of paper is as follows. In Section 2 we describe the model of BRW in both
homogeneous and non-homogeneous case, as well as in both random and non-random medium. In
Section 3 we present the previously obtasined auxiliary results and limit theorems. In Section 4
we explain the concept of intermittency and its empirical aproximations. Finally, in Section 5 we
present the results of simulations of BRW with various initial conditions.
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2. Branching random walks in non-random and random medium

2.1. Non-random medium
Let us consider a evolving system of particles on a multidimensional lattice Zd, z ∈ N . Particles

can walk between points of the lattice and we assume that the probability of the jump from a point
x ∈ Zd to a point y ∈ Zd during the small time h is equal to

a(x, y) · h+ o(h)

A random walk is assumed to be symmetric: a(x, y) = a(y, x); homogeneous in space: a(x, y) =
a(0, y−x) =: a(y−x); regular:

∑
z 6=0

a(x) = −a(0); and irreducible: every point x ∈ Zd is reachable.

At first we assume homogeneity of branching medium. I.e., we assume the evolution of a
particle at the point y during small time h consists of three opportunities. The particle can die
with probability b0(y) · h + o(h), where b0(y) > 0. The particle can split into two particles with
probability b2(y) · h + o(h), where b2(y) > 0. Nothing happens with the particle with probability
1+b1(y) · h+ o(h), where b1(y) 6 0.

Let us assume for simplicity that at the initial moment of time there is exactly one particle on
the lattice located at the point x. We combine walking and branching processes as follows. During
small time h the evolution of a particle consists of several opportunities:

1. The particle can die with probability b0(y) · h+ o(h), where b0(y) > 0;

2. The particle can split into two particles with probability b2(y) · h+ o(h), where b2(y) > 0;

3. The particle can jump to the point y + z with probability a(z) · h+ o(h), where a(z) > 0;

4. Nothing happens with the particle with probability 1+b1(y) ·h+a(0) ·h+o(h), where b1(y) 6 0,
a(0) 6 0.

We will describe this system via the number of particles at time t at point y denoted by µt(y).
We consider also the total population size µt :=

∑
y µt(y). This variables, in turn, will be studied

in terms of their moments:
mn(t, x, y) = Exµnt (y)

mn(t, x) = Exµnt
We can abandon the assumption of the homogeneity of the medium. That is, assume that a

branching process is possible only at a finite number of points. For simplicity, we assume that there
is one such point and that it is located at the origin. For the models described above, a wide range
of results was obtained, an overview of which can be found, for example, in [7].

2.2. Random medium
In a random medium the branching is governed by a pair of random variables (b0, b2) =

(b0(y, ω), b2(y, ω)), y ∈ Zd. We assume that pairs (b0(y, ω), b2(y, ω)) are spatially i.i.d. Variable
ω ∈ Ω, where Ω =

(
R2

+

)Zd represents sample realizations of field (b0(y, ω), b2(y, ω)). We consider
branching takes place on a ”frozen” medium, i.e. in a fixed medium realization ω. In a random
medium the evolution of a particle at the point y during small time h consists of several opportu-
nities:

1. The particle can die with probability b0(y, ω) · h+ o(h), where b0(y, ω) > 0
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2. The particle can split into two particles with probability b2(y, ω) · h+ o(h), where b2(y, ω) > 0

3. The particle can jump to the point y + z with probability a(z) · h+ o(h), where a(z) > 0

4. Nothing happens with the particle with probability 1 + b1(y, ω) + a(0, ω) · h + o(h), where
b1(y) 6 0,a(0) 6 0.

We again assume that at the initial moment of time there is exactly one particle on the lattice
located at the point x.

We introduce a random potential as

V (y, ω) := b2(y, ω)− b0(y, ω)

Let us fix a medium realization ω. We denote by µt(y, ω) the number of particles at time t at
point y, and consider also the total population size µt :=

∑
y µt(y, ω).

For every n ∈ N the ”quenched” moments are introduced as:

mp
n(t, x, y, ω) = mp

n(t, x, y) = [Eωxµnt (y)]p ;

mp
n(t, x, ω) = mp

n(t, x) = [Eωxµnt ]p

We denote by 〈·〉 the expectation with respect to the medium probability measure.
For every n ∈ N the ”annealed” moments are determined as:

〈mp
n(t, x, y)〉;

〈mp
n(t, x)〉

We introduce the ”quenched” generating functions as follows:

F (z; t, x, y, ω) = F (z; t, x, y) := Eωxe−zµt(y)

F (z; t, x, ω) = F (z; t, x) := Eωxe−zµt

Functions F (z; t, x, y) and F (z; t, x) satisfy the Skorohod equation for generating functions, see,
e.g. [Albeverio et al, 2000]:

∂tF = AF + (b2(x)F − b0) · (F − 1) (1)

with the initial conditions:
F (z; 0, x, y) = e−zδy(x);

F (z; 0, x) = e−z

From the equation (1) one can derive moments equations:

∂tmn = Amn + V (x)mn + b2(x)gn [m1, . . . ,mn−1] (2)

with the initial conditions:
mn(0, ·, y) = δy(·); mn(0, ·) ≡ 1,

where g1 ≡ 0 and

gn [m1, . . . ,mn−1] :=

n−1∑
i=1

(
n
i

)
mimn−i, for n > 2.

For the first moments, equations (2) take a simple form:

∂tm1 = Am1 + V (x)m1
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3. Feynman–Kac representation and limit theorems

Before proceeding to the description of limit theorems, we need a Feynman–Kac representation.
For more information about its derivation, see [4]. Let us consider general equation for random
fields:

∂tu(t, x) = κ∆u(t, x) + V (x, ω)u(t, x),

u(0, x) = u0(x)
(3)

Let V (x, ω) be i.i.d. such that
〈(

V +(0)
ln+ V +(0)

)d〉
<∞, where ln+(x) := max(ln(x), 1).

Let lim sup
|x|→∞

ln+ u0(x)
|x| ln |x| < 1. Under these conditions equation (3) has unique non-negative solution,

which admits the Feynman–Kac representation:

u(t, x) = Ex

e

t∫
0

V (xs,ω)ds
u0 (xt)

 ,
where xt is underlying random walk.

Recall that
∂tm1 = Am1 + V (x)m1

with the initial conditions

m1(0, ·, y) = δy(·); m1(0, ·) ≡ 1

Then we can apply the Feynman-Kac representation and obtain:

m1(t, x, y) = Ex

e

t∫
0

V (xs,ω)ds
δy(xt)


m1(t, x) = Ex

e

t∫
0

V (xs,ω)ds
· 1


Assume that

lim
t→∞

t

ln 〈epV t〉
= 0.

Then for the annealed moments 〈m1(t, x, y)〉 and 〈m1(t, x)〉 it can be shown that:

lim
t→∞

ln 〈mp
1〉

ln 〈epV t〉
= 1

lim
t→∞

ln 〈mp
n〉

ln 〈epnV t〉
= 1
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4. The intermittency

Given two functions f, g : R+ → R, we will write f � g if g(t)− f(t)→∞ as t→∞.
Let

{
η(t, x);x ∈ Zd

}
be a family of non-negative spatially homogeneous random fields and

Λp(t) = ln 〈η(t, 0)p〉 <∞, t ≥ 0, p ∈ N

The random fields
{
η(t, x);x ∈ Zd

}
are called intermittent Gärtner and Molchanov [2] if they

are ergodic and

Λ1(t)� Λ2(t)

2
� Λ3(t)

3
� . . . (4)

Note that if so-called Lyapunov exponents λp = lim
t→∞

Λp(t)
tβ

, p ∈ N exist for some β > 1, and

λ1 <
λ2
2 < λ3

3 < . . . , then condition (2) will be met.
Intermittency means that as t →∞ the main contribution to each moment function is carried

by higher and higher and more and more widely spaced ”peaks” of the random field.
Let for simplicity consider 〈mp

1〉, and assume that potential has the Weibull-type tails:

lim
z→+∞

(1− FV (z)) = e−cz
−α
,

where α > 1, c > 0.
In this case based on the previous theorem one can derive the following:

lim
t→∞

ln 〈mp
1〉

t
α
α−1

= C · p
α
α−1

Then we can observe that
λm1
p

p
= lim

t→∞

ln 〈mp
1〉

tβ
= C · p

1
1−α

Therefore, the sequence of λ
m1
p

p is strictly increasing as function of p, which, in turn, implies the
intermittency of 〈mp

1〉. The same result is valid for 〈mp
n〉, where n ∈ N.

5. Simulation

For the simulation, we used the R 3.5.1 data analysis environment. Parallel programming with
47 cores was used. A simple one-dimensional random walk was considered. The intensity a0 for
all models is assumed to be -1. That is, the particle waits for an exponential time, and then
moves equally likely to one of the neighboring points. The simulated BRW have the potential to
experience an exponential explosion [7]. Therefore, the simulation of the process does not take
place over a finite period of time, but until there are 1000 particles on the lattice at the same time.
In addition, an exponential approximation was used: as long as at least 90% of the models has at
least one particle but less than 1000 particles, the remaining exploded 10% are imputed using a
generalized linear regression of the logarithm of the number of particles on time. The coefficient of
determination of such imputation was 90%.

Здесь пока считается. Будет три варианта моделей в неоднородных средах: неслучайная
среда, случайная с вейбулловским хвостом, случайная с тройным экспоненциальным хвостом.
Для однородной среды просто скажу, что все то же самое.

Что не сделано: можно ли придумать статистический способ оценки перемежаемости?
Чтобы не глазами на графики смотреть.
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6. Conclusion
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