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Abstract

We consider a mathematical model of the functioning of a germinal center of the lymphatic system. This
model is constructed in terms of branching random walks with particles of several types on a discrete lattice.
The types of particles correspond to the types of B-lymphocytes: centroblasts, centrocytes, plasma cells and
memory cells. Lattice coordinates correspond to nucleotide representations of B-cell receptors. Equations of
mathematical expectations of local numbers of particles are given and their solutions are obtained.
Keywords: multitype branching process; random walk; adaptive immune system; germinal center reaction.

1. Introduction
We consider a mathematical model of the functioning of a germinal center of the lymphatic system. Germinal
centers (GCs) are transiently formed structures within B cell zone (follicles) in secondary lymphoid organs,
where mature B cells proliferate, differentiate, and mutate their antibody genes (through somatic hypermu-
tation aimed at achieving higher affinity) during a normal immune response. These develop dynamically
after the activation of follicular B cells by T-dependent antigen.
Many publications are devoted to the problem of modeling germinal center reaction. In [3] authors construct
a mathematical model of the maturation of the affinity of B-cell antibodies in germinal centers during the
immune response, thereby investigating the interaction between division, mutation and selection in a sim-
plified evolutionary model. The model is built on a branching discrete process (generations of descendants)
with a finite number of particle types that characterize different classes of antibody affinity. In [4] authors
presented a model built on a branching random walk (the state graph is a vector of finite length from 0
and 1) with discrete time (generations of descendants). In [2] authors present a model of B-cell mutation-
selection-proliferation in the germinal center, which is based on a nonlinear inhomogeneous second-order
partial differential equation, and an analysis is given in the case of piecewise constant coefficients in various
asymptotic regimes. In [5] a mathematical model of the dynamics of the germinal center is developed. The
authors provide a numerical study of populations that consist of B-cells that originate from one strain-specific
clone, one broadly reactive clone, or both. In [6] authors propose a model (a branching process with several
types of particles, a numerical solution of a system of differential equations), which simulates the process of
maturation of the affinity of antibodies in the germinal center with tracking of individual subclones. The
model reflects the general dynamics of the germinal center, the degree of increase in the number of subclones
is qualitatively comparable with the data of B cells isolated from human lymph nodes.

2. Methodology
We consider the population dynamics of B-lymphocytes, which proliferate, differentiate and undergo somatic
hypermutagenesis processes in the germinal center. We describe the configuration (BCR) of a lymphocyte
using a nucleotide (A,C,G, T ) sequence of length L. The space of possible states is denoted by Ω (|Ω| = 4L).
In [1] it was shown that during the transition of the cell type from centrocyte to centroblast, the subsequent
intensity of centroblast proliferation depends on the strength of the signal received from the T-cell, which
depends on the BCR configuration. We model this by dividing the centroblasts into 2 subgroups: R = {r1, r2}.
We assume a finite number of K cell generations: in the k-th generation, transitions are possible within the
k generation or to the next generation k + 1:

1. centroblast (generation k) → 2 centroblasts (generation k) with intensity β
(k)
2cbr

:= β2cbr , r ∈ R,
k = 1, . . . ,K;
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2. centroblast (k) → centrocyte (k) with intensity β
(k)
ccr , r ∈ R;

3. centrocyte (k, from x) → plasma cell (k) with intensity β
(k)
pc (x);

4. centrocyte (k, from x) → memory cell (k) with intensity β
(k)
mc(x);

5. centrocyte (k, from x) → centroblasts (k + 1) with intensity β
(k)
cbr

(x), r ∈ R;

6. centroblast (k) dies with intensity µ
(k)
cbr

, r ∈ R;

7. centrocyte (k, from x) dies with intensity µ
(k)
cc (x);

8. plasma cell (k) dies with intensity µ
(k)
pc ;

9. memory cell (k) dies with intensity µ
(k)
mc.

We denote S := {cbr1 , cbr2 , cc, pc,mc} and the corresponding set of pairs Sk := {(cbr1 , k), (cbr2 , k), (cc, k), (pc, k), (mc, k)},
k = 1, . . . ,K. We denote the number of descendants of the j-th type of generation kj at y at the moment
of time t, originating from one particle of the i-th type of generation ki, located at the point x at the initial
moment of time, through ni→j(t, x, y), where i, j ∈ ∪Kk=1Sk. We denote z := (zcb1 , zcb2 , zcb3 , zcc, zpc, zmc) and
introduce generating functions: for k = 1, . . . ,K

F (k)
s (t, x, y, z) = E

∏
s′∈S

z
n(s,k)→(s′,k′)(t,x,y)

s′ , s ∈ S, k ∈ K, k′ = k, k + 1.

We introduce a system of differential equations characterizing the population dynamics of the process

∂F
(k)
cbr

(t, x, y, z)

∂t
= µ

(k)
cbr
− (µ

(k)
cbr

+ β2cbr + β(k)
ccr )F

(k)
cbr

(t, x, y, z)

+ β2cbr

( ∑
x′∈Ω

a(x, x′)F
(k)
cbr

(t, x′, y, z)
)2

+ β(k)
ccrF

(k)
cc (t, x, y, z), r ∈ R;

∂F
(k)
cc (t, x, y, z)

∂t
= µ(k)

cc (x)−
(
µ(k)
cc (x) +

∑
r∈R

β
(k)
cbr

(x) + β(k)
pc (x) + β(k)

mc(x)
)
F (k)
cc (t, x, y)

+
∑
r∈R

β
(k)
cbr

(x)F
(k+1)
cbr

(t, x, y) + β(k)
pc (x)F (k)

pc (t, x, y)

+ β(k)
mc(x)F (k)

mc (t, x, y) for k < K;

∂F
(K)
cc (t, x, y, z)

∂t
= µ(K)

cc (x)−
(
µ(K)
cc (x) + β(K)

pc (x) + β(K)
mc (x)

)
F (K)
cc (t, x, y, z)

+ β(K)
pc (x)F (K)

pc (t, x, y, z) + β(K)
mc (x)F (K)

mc (t, x, y, z) for k = K;

∂F
(k)
pc (t, x, y, z)

∂t
= µ(k)

pc − µ(k)
pc F

(k)
pc (t, x, y, z);

∂F
(k)
mc (t, x, y, z)

∂t
= µ(k)

mc − µ(k)
mcF

(k)
mc (t, x, y, z).

Boundary conditions for k = 1, . . . ,K:

F (k)
s (0, x, y, z) = zδ(x,y)

s .

3. Result
We denote

m(s,k)→(s′,k)(t, x, y) = En(s,k)→(s′,k)(t, x, y), s ∈ S, s′ ∈ S, k = 1, . . . ,K;

m(cc,k)→(cbr,k+1)(t, x, y) = En(cc,k)→(cbr,k+1)(t, x, y), r ∈ R, k = 1, . . . ,K − 1.
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Note that

m(s,k)→(s′,k)(t, x, y) =
∂F

(k)
s (t, x, y, z)

∂zs′

∣∣∣∣
z=(1,...,1)

, s ∈ S, s′ ∈ S;

m(cc,k)→(cbr,k+1)(t, x, y) =
∂F

(k)
cc (t, x, y, z)

∂zcbr

∣∣∣∣
z=(1,...,1)

, r ∈ R.

Here we obtain following representations:

m(pc,k)→(pc,k)(t, x, y) = e−µ
(k)
pc tδ(x, y); (1)

m(mc,k)→(mc,k)(t, x, y) = e−µ
(k)
mctδ(x, y); (2)

m(cc,k)→(cc,k)(t, x, y) = e
−
(
µ(k)
cc (x)+

∑
r∈R

β
(k)
cbr

(x)+β(k)
pc (x)+β(k)

mc(x)
)
t

δ(x, y); (3)

m(cc,k)→(pc,k)(t, x, y) =
β

(k)
pc (x)e−µ

(k)
pc tδ(x, y)

µ
(k)
cc (x) +

∑
r∈R

β
(k)
cbr

(x) + β
(k)
pc (x) + β

(k)
mc(x)− µ(k)

pc

+ e
−(µ(k)

cc (x)+
∑
r∈R

β
(k)
cbr

(x)+β(k)
pc (x)+β(k)

mc(x))t

δ(x, y);

(4)

m(cc,k)→(mc,k)(t, x, y) =
β

(k)
mc(x)e−µ

(k)
mctδ(x, y)

µ
(k)
cc (x) +

∑
r∈R

β
(k)
cbr

(x) + β
(k)
pc (x) + β

(k)
mc(x)− µ(k)

mc

+ e
−(µ(k)

cc (x)+
∑
r∈R

β
(k)
cbr

(x)+β(k)
pc (x)+β(k)

mc(x))t

δ(x, y).

(5)

Consider the following problem: let in a short time one centroblast of type r ∈ R in generation k mutates
from state x into state y with intensity 2β2cbr . We get the Cauchy problem

∂m(cbr,k)→(cbr,k)(t, x, y)

∂t
= −2β2cbrm(cbr,k)→(cbr,k)(t, x, y)

+ 2β2cbr

∑
x′∈Ω

a(x, x′)m(cbr,k)→(cbr,k)(t, x
′, y);

m(cbr,k)→(cbr,k)(0, x, y) = δ(x, y).

Denoting Ax,y := a(x, y), we get its solution in the form

p(k)
r (t, x, y) = e2β2cbr (A−I)t.

Let the intensity of substitution of one nucleotide to another be 1/s. Then for L = 1

A =


−3/s 1/s 1/s 1/s
1/s −3/s 1/s 1/s
1/s 1/s −3/s 1/s
1/s 1/s 1/s −3/s


Then denoting

a0(s, β2cbr , t) :=
1

4
(e−2β2cbr t + 3e

−2β2cbr
t(s+4)

s );

a1(s, β2cbr , t) := −1

4
(e
−2β2cbr

t(s+4)

s − e−2β2cbr t).

we obtain
(e2β2cbr (A−I)t)x,y = a0(s, β2cbr , t)

δ(x,y)a1(s, β2cbr , t)
1−δ(x,y)
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and for L > 1 due to the independence of mutations

(e2β2cbrAt)x,y = a0(s, β2cbr , t)
L−dist(x,y)a1(s, β2cbr , t)

dist(x,y)e2β2cbr t.

Thus, representations (3), (1), (2), (4) and (5) include possible transitions of particles in the considered
system.

4. Discussion and Conclusion
We have proposed an approach for modeling the reactions in germinal centers using branching random walks
with particles of several types on a discrete lattice. We have presented the equations of local moments of
particles and their solutions. Further steps in this area involve building a computer simulation of the process.
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