
Discriminating between and within (semi)continuous classes of both Tweedie and geometric Tweedie
models

Abid Rahma*
University of Sfax, Laboratory of Probability and Statistics & University Paris-Dauphine Tunis, Department

of Mathematics, Tunisia - rahma.abid.ch@gmail.com & rahma.abid@dauphine.tn

Kokonendji Célestin C.
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Abstract

In both Tweedie and geometric Tweedie models, the common power parameter p < (0, 1) works as an
automatic distribution selection. It separates two subclasses of semicontinuous (1 < p < 2) and positive con-
tinuous (p ≥ 2) distributions. Our paper centers around exploring diagnostic tools based on the maximum
likelihood ratio test and minimum Kolmogorov-Smirnov distance methods in order to discriminate close
distributions within each subclass of these two models according to values of p. Grounded on the unique
equality of variation indices, we also discriminate the gamma and geometric gamma distributions with
p = 2 in Tweedie and geometric Tweedie families, respectively. Probabilities of correct selection for several
combinations of dispersion parameters, means and sample sizes are examined by simulations. We thus
perform a numerical comparison study to assess the discrimination procedures in these subclasses of two
families. Semicontinuous (1 < p ≤ 2) distributions in the broad sense are significantly more distinguishable
than the over-varied continuous (p > 2) ones; and two datasets for illustration purposes are investigated.
Keywords: Kolmogorov-Smirnov distance, Likelihood ratio test, Probability of correct selection.

1. Introduction
Tweedie and geometric Tweedie models provide flexible parametric families of distributions to deal mainly
with non-negative right-skewed data and can handle continuous data with probability mass at zero (Tweedie,
1984; Jørgensen and Kokonendji, 2011). The common power parameter p < (0, 1), so-called the Tweedie
parameter which is one-to-one connected to the common (geometric) stability index α = (2−p)/(1−p), plays
an intrinsic role in both models. Indeed, p is an index which distinguishes each distribution within one of
each family. See, e.g., Kokonendji et al. (2021).
As preliminaries to a discrimination procedure between two distributions, it is necessary that both distribu-
tions have common characteristics such as the supports and shapes of densities. More specifically, for both
Tweedie and geometric Tweedie families of distributions, we shall also consider zero-mass and variation
indices which are recently introduced by Abid et al. (2020) for non-negative random variable Y. Recall
that the zero-mass index is defined through ZM(Y) := P(Y ≤ y) ∈ [0, 1] for y → 0. Thus, ZM → % when
y→ 0 indicates a ZM or semicontinuous distribution if % > 0 and an absolutely continuous one if % = 0. As
for the variation (or Jørgensen) index expressed by VI(Y) = VarY/(EY)2

∈ (0,∞), it is defined in relation to
the standard exponential distribution. The VI is viewed as the ratio of the variability of Y to its expected
exponential variability which is (EY)2. The equi-variation implies no discrepancy between both variabilities.
As a matter of fact, Y is said to be over- (equi- and under-varied) compared to exponential with mean EY if
VI > 1 (VI = 1 and VI < 1), respectively. Scrutinizing both phenomena of ZM and VI, there are very close
distributions between and within Tweedie and geometric Tweedie families to be discriminated.
Discriminating between two probability distribution functions was studied by Cox (1961, 1962). There are
certain methodologies to measure the closeness between two distribution functions. At this stage, we attemp
to challenge a new aspect in statistics in the discrimination between and within close distribution classes of
models (between and within subclasses of both Tweedie and geometric Tweedie models) through the use of
the maximum likelihood ratio test (LRT) and minimum of Kolmogorov-Smirnov distance (KSD) methods.
Sections 2 and 3 display some closeness characteristics of the two interested models with the common case
of p = 2. Section 3 portrays the proposed discrimination procedures and the estimated probability of correct
selection (PCS). Section 4 summerizes some numerical results and applications for illustrative purposes.
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2. Main properties of the Tweedie family
In this section, some characteristics of continuous and semicontinuous Tweedie models are exhibited. Let X
be a random variable distributed as a Tweedie distribution, denoted Twp(m, φ). Its density function can be
indicated by

fTwp (x; m, φ) = ap(x;φ) exp[{xψp(m) − Kp(ψp(m))}/φ]1Sp (x), (1)

whereφ > 0 is the dispersion parameter, p ∈ (−∞, 0]∪[1,∞) is the Tweedie index determining the distribution,
Sp is the support of distribution, ap(x;φ) is the normalizing function to be discussed below, Kp is the cumulant
function, ψp is the inverse function of the first derivative K′p and m = K′p(θ) is the mean of X. Note that
K′p(·) defines a diffeomorphism between its canonical domain Θp and its image Mp := K′p(Θp) which is its
mean domain. Although the Tweedie densities are not known in a closed form, their cumulant functions
are simple. Table 1 exhibits some of the subclasses of Tweedie models.

(Geometric) Tweedie models α = α(p) p Sp Mp
(Geometric) Extreme stable 1 < α < 2 p < 0 R (0,∞)
(Asymmetric Laplace/) Gaussian α = 2 p = 0 R R
[Do not exist] α > 2 0 < p < 1
(Geometric) Poisson α = −∞ p = 1 N (0,∞)
(Geometric) Compound-Poisson-gamma α < 0 1 < p < 2 [0,∞) (0,∞)
(Geometric) Non-central gamma α = −1 p = 3/2 [0,∞) (0,∞)
(Geometric) Gamma α = 0 p = 2 (0,∞) (0,∞)
(Geometric Mittag-Leffler/) Positive stable 0 < α < 1 p > 2 (0,∞) (0,∞)
(Geometric) Inverse Gaussian α = 1/2 p = 3 (0,∞) (0,∞)

Table 1: Summary of Tweedie and geometric Tweedie including their common stability index α = α(p),
power p, support Sp of distributions and mean domain Mp.

Given the expectation m of X ∼ Twp(m, φ), its variance is well-known to be φmp. Thus, one has

VI(Twp) = φmp−2
(
T 1 ⇔ φ T m2−p

)
. (2)

Following similar investigations of Abid et al. (2020, Section 4.2 and Figure 1), the dominant behaviors of
VI(Tw) in (2) appear to be over-variations for all p < (0, 1] and an equi-variation for p = 2. This index is new
for Tweedie models. The special case of VI(Y) = φ in (2) for the gamma (p = 2) distribution does not depend
on the mean m.
3. Background of the geometric Tweedie family
Now, we are essentially interested in the continuous and semicontinuous geometric Tweedie models arising
from geometric sums of Tweedie variables. Let Z ∼ GTwp(m̃, φ̃) be the geometric Tweedie variable with
power p < (0, 1), dispersion φ̃ > 0 and mean m̃ parameters. Therefore, one has the following representation:

Z =

G∑
j=1

T j,

where T1,T2, . . . are independent and identically distributed (i.i.d.) as a Tweedie distribution Twp(m, φ) and
G is a geometric random variable, independent of T j, with probability mass function P(G = g) = q(1 − q)g−1,
for g = 1, 2, . . . and q ∈ (0, 1). Moreover, the geometric Tweedie family collapses to exponential mixture
representation (see, e.g., Abid et al., 2019b, Proposition 2.1) and it is, therefore, expressed by the following
hierarchical formulation

X ∼ Exponential(1) and Z|(X = x) ∼ Twp(xm̃, x1−pφ̃).

The density function of Z ∼ GTwp(m̃, φ̃) is deduced from (1) by

fGTwp (z; m̃, φ̃, p) =

∫
∞

0
exp(−x) fTwp (z; xm̃, x1−pφ̃)dx, (3)
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which is however not analytically tractable, apart from special cases corresponding to p ∈ {0, 1, 2, 3}. Yet,
numerical methods allow the density (3) to be accurately and fast evaluated by simulation.
From the characteristic variance m̃2 + φ̃m̃p of Z ∼ GTwp(m̃, φ̃), the variation index is expressed by

VI(GTwp) = 1 + φ̃m̃p−2
(
T 1 ⇔ φ̃ T 0

)
. (4)

It is noteworthy that just like Tweedie models with p = 2 in (2), the Jørgensen (or variation) index VI(GTw)
in (4) for the particular case p = 2, corresponding to the geometric gamma distribution, is equal to 1 + φ̃ and
not depending on the mean m̃. For p = 2 and given any m̃ = m > 0, both variation indexes for Tweedie (2)
and geometric Tweedie (4) models coincide when their dispersion parameters differ by +1 in the sense of
geometric Tweedie. More conventionally, one can write Tw2(m, φ) ≈ GTw2(m, 1 + φ) for φ ≥ 1 and m > 0.
4. Discrimination procedure
In this section, two techniques are firstly considered involving the maximum LRT and minimum KSD as
optimality criteria to diagnose the appropriate fitting model among two given distributions for a dataset.
The goal is to compare how the PCSs work for different situations.
Assume that we observe a random sample Y1,Y2, . . . ,Yn that is supposed to belong to one of the parent
distributions fp(y; m, φ). For fixed p > 1, the maximum-likelihood of the mean m and dispersion parameter
φ are given, respectively, by

m̂ =
1
n

n∑
i=1

Yi and φ̂ = arg max
φ>0

Lp(m̂, φ),

where Lp(m̂, φ) is the profile likelihood function calculated at m̂. The likelihood ratio statistic, also known as
the Cox statistic (1961), is defined by

LTp j,p j′ = log

 Lp j (m̂ j, φ̂ j)

Lp j′ (m̂ j′ , φ̂ j′ )

 , (5)

The decision rule for discriminating between two distributions having densities fp j and fp j′ refers basically
to choosing fp j if LTp j,p j′ > 0, and to rejecting fp j in favor of fp j′ otherwise. Notice that, in contrast to the LRT,
the KSD test may consider more than two competitive distributions to describe data. The KSD is defined by

KSp j = sup
−∞<y<∞

|̂Fp j (y; m̂ j, φ̂ j) − F̃(y)|, j ∈ {1, . . . , `}, (6)

with ` ≥ 2, F̂p j (·; m̂ j, φ̂ j) the distribution function of fp j (·; m̂ j, φ̂ j) and F̃(·) the empirical distribution function
calculated directly from data. The model index j0 with the minimum distance is, therefore, selected as the
winning model:

j0 = arg min
j∈{1,...,`}

KSp j .

The performance of the maximum LRT and minimum KSD methods is investigated by the PCSs based
on simulations. In practice, we generate (Y(1)

n , . . . ,Y
(N)
n ), where Y(k)

n are k-random samples of size n that is
supposed to belong to fp. We repeat both procedures, LRT and KSD, for each Y(k)

n , k = 1, . . . ,N. The PCS,
which corresponds to the proportion of times fp, is chosen as the winner model and can be evaluated by:

P̂CSp =
1
N

N∑
k=1

1{Y(k)
n is correctly classified}. (7)

4. Simulation studies and applications
Relying upon their similarities based on the variation indices, and resting on supports and shapes, we
first discriminate between the gamma Tw2(m, φ) and geometric gamma GTw2(m̃, φ̃) distributions verifying
φ = 1 + φ̃. Next, we distcriminate between the parent distribution Twp and the alternative distributions
are Twp+ε, with ε > 0 such that Twp and Twp+ε have the same type (see Table 1). This part aims to detect
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the evolution of the discrimination between distributions for each type: 1 < p < 2 and p > 2. Finally, we
distcriminate between the parent distribution GTwp and the alternative distributions are GTwp+ε, with ε > 0
such that GTwp and GTwp+ε have the same type.
Two real datasets are analyzed for illustrative purposes. Concerning the first dataset, gamma Tw2 and
geometric gamma GTw2 distributions are compared. As for the second one, both semicontinuous (1 < p < 2)
subclasses of Tweedie and geometric Tweedie are considered through suggesting different values of the
power parameter p to fit both models.
4.1 Failure times of the air conditioning system Data consist of the failure times of the air conditioning
system of an airplane (Linhart and Zucchini, 1986). The maximum likelihood estimates of the parameters of

Tw2(m, φ) and GTw2(m̃, φ̃) distributions are calculated as m̂ = 59.60, φ̂ = 1.2317, ̂̃m = 59.60 and ̂̃
φ = 0.2380. It

is noteworthy that, ̂̃φ ' 1 − φ̂ as expected.
4.2 Time to failure of pumps The second dataset concerns the time to failure of sixty-one cam-driven
reciprocating pumps. A significant presence of zeros (ẐM = 0.1148) guides us to discriminate among the
semicontinuous (1 < p < 2) subclasses of both Tweedie and geometric Tweedie families.

Models
(̂̃
φ
)
φ̂ Log-lik KSD

(G)Tw1.1 (1.8000) 5.7238 (−244.7528) −266.0258 (0.0497) 0.1609
(G)Tw1.2 (1.5300) 6.1105 (−245.7920) −250.6113 (0.0449) 0.1079
(G)Tw1.3 (1.2200) 5.4724 (−250.2459) −246.3995 (0.0449) 0.0791
(G)Tw1.4 (2.1000) 4.6439 (−250.5964) −245.9001 (0.0806) 0.0605
(G)Tw1.5 (1.2800) 3.8792 (−251.0668) −247.2682 (0.0742) 0.0469
(G)Tw1.6 (0.9300) 3.2701 (−252.1867) −250.1159 (0.0672) 0.0379
(G)Tw1.7 (0.8600) 2.8560 (−253.9838) −254.8261 (0.0964) 0.0493
(G)Tw1.8 (0.6300) 2.7051 (−256.0918) −262.9210 (0.0820) 0.0946
(G)Tw1.9 (0.5600) 3.1977 (−260.2073) −280.2501 (0.1076) 0.2092

Table 2: Estimated dispersion parameters, along with the log-likelihood values (Log-lik) and KSDs for both
alternatives Twp and GTwp models with 1 < p < 2. The numbers in the parenthesis represent the results
from GTwp models.
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