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Summary. Temporal disaggregation is a method commonly used in official statistics to
enable high-frequency estimates of key economic indicators, such as GDP. Traditionally,
such methods have relied on only a couple of high-frequency indicator series to produce
estimates. However, the prevalence of large, and increasing, volumes of administrative
and alternative data-sources motivates the need for such methods to be adapted for high-
dimensional settings. In this work, we propose a novel sparse temporal-disaggregation
procedure and contrast this with the classical Chow-Lin method. We demonstrate the
performance of our proposed method through simulation study, highlighting various ad-
vantages realised. We also explore its application to disaggregation of UK gross domestic
product data, demonstrating the method’s ability to operate when the number of potential
indicators is greater than the number of low-frequency observations.
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1. Motivation

Our work seeks to address an important question in economic statistics, namely is there
a principled approach by which one can provide more frequent and interpretable es-
timates of headline economic variables using existing (more infrequent) measures and
supplemental data. Specifically, our work addresses the task of temporal disaggregation,
constructing high frequency estimates of low frequency time series, and asks how this
task can be effectively tackled in a high-dimensional setting. Disaggregating to the high
frequency is usually done by incorporating a few high frequency indicator series into a
regression model that are believed to model the short-term dynamics of the variable of
interest. However, the prevalence of large, and increasing, volumes of administrative
and alternative data-sources motivates the need for such methods to be adapted for
high-dimensional settings. These are settings where we want to include more indicator
series into the model than the number of data points observed for the low frequency se-
ries. In such settings, traditional temporal disaggregation methods become statistically
incapable of providing estimates. By integrating methods from the high-dimensional
statistics literature, our key contribution is to create a regularised M-estimation frame-
work for well-established Chow-Lin temporal disaggregation procedure (Chow and Lin,
1971), which can build robust and interpretable estimates in high-dimensional scenarios.

This work is motivated by the challenging task of performing high frequency dis-
aggregation for UK national GDP, moving from a quarterly to a monthly resolution.
For this task, there are a considerable number of indicator series that one may wish to
use. In our application we consider survey based series, such as the monthly business
survey (MBS) in both services and production, alongside VAT data, retail sales indices,
and several novel indicators such as traffic flows at ports and on roads. In total, we
consider 97 indicators, all of which are collected at a monthly frequency. Given the sig-
nificant interest in fast measurements of economic activity, the UK’s Office for National
Statistics (ONS) has developed a monthly GDP index, and published this statistic since
May 2018. Even though a monthly index exists in this case, there is still great interest
in performing temporal disaggregation, the reasons are threefold. Firstly, the monthly
index is an output based measure, however economists may also be interested in both
expenditure and income based estimates. Since, temporal disaggregation can be applied
to any output stream, either expenditure or income based measures could be used. The
resulting high-frequency estimate can thus compliment the existing output based index.
Secondly, due to the construction of the index, publication lags the period of measure-
ment (an issue common to most economic statistics). However, temporal disaggregation
can potentially be used to find indicators that are relevant and updated more frequently
providing a faster estimate of the output statistic. National Statistics Institutes (NSIs)
are actively developing so-called fast-indicators for exactly this purpose and in this ar-
ticle we consider several of these in the form of traffic data. Finally, one of the key
issues surrounding the fast release of data is in understanding the associated short-term
movements. To this end, temporal disaggregation using interpretable indicator series
can provide insight by highlighting which indicators are driving movement.

Through extensive simulation studies we investigate the performance of our approach
in estimating high frequency disaggregated series in both standard and high-dimensional
scenarios. We also compare against the established Chow-Lin method in standard di-
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mensional settings. In the quarterly-to-monthly GDP disaggregation application we
demonstrate that our estimated model not only aligns with economic intuition, but also
achieves better tracking of the published monthly GDP index when compared against
the Chow-Lin method.

2. Temporal Disaggregation

The temporal disaggregation problem is as follows. Given the (n × 1) vector yl of low
frequency observations of an economic aggregate and given the (m×p) matrix Xh of high
frequency observations on p related indicators, we wish to estimate the (m×1) vector yh
of high frequency unobserved observations. For example, using quarterly imports and
exports series to disaggregate annual trade data would mean n represents the number of
observed years, m = 4n the number of quarters and p = 2 the number of indicator series
available. We can set up the linear regression at the high frequency as yh = Xhβ + uh,
where β is the (p×1) vector of unknown parameters and uh is a vector of (m×1) random
disturbances such that uh ∼ N(0, Vh). As the dependent variable yh is not observed,
the procedure is to temporally aggregate the regression to the observed low frequency
via the aggregation matrix C = In ⊗ 1k, where ⊗ is the Kronecker product and 1k is
a k-dimensional row vector of ones where k is the number of high frequency periods
between each low frequency observation. This is assuming the data is flow data as the
aggregation will be a sum. For index data ones would be replaced by 1/k as we average.
For stock data aggregation would be made by interpolation where we impute the first
or last high frequency period.

We then have a linear regression at the observed low frequency: yl = Xlβ+ul, where
yl = Cyh, Xl = CXh and ul = Cuh with ul ∼ N(0, Vl) for Vl = CVhC

T . The best linear
unbiased estimator of yh consistent with the aggregation constraint yl = Cyh is given by

ŷh = Xhβ̂ + VhC
TV −1l (yl −Xlβ̂) , (1)

where β̂ is the Generalised Least Squares (GLS) estimate of β in the low frequency
observed model given by

β̂ = (XT
l V
−1
l Xl)

−1XT
l V
−1
l yl . (2)

Clearly, the covariance matrix Vh is assumed to be known to construct these estimates
and hence in practical problems we must estimate it. Chow and Lin (1971) propose
assuming a known structure of Vh by assuming the disturbance series uh follows an
AR(1) model. I.e.

uh,t = ρuh,t−1 + εh,t , (3)

|ρ| < 1 , (4)

εh,t ∼ N(0, σ2) .

The estimation of the unknown parameters (β, ρ, σ2) are found by means of maximising
the log-likelihood function of the implied low frequency model `(β, σ2|ρ) by optimising
via a grid search over the stationary (−1, 1) domain of ρ. The assumed structure in
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(3) is desirable as if yh and Xh were both non-stationary, then under (4), they are co-
integrated in the sense of Engle and Granger (1987). A very attractive property when
forecasting time series. Other authors (Fernandez, 1981; Litterman, 1983) propose non-
stationary processes in (3) which generally result in smoother high frequency estimates
at the expense of forecasting performance.

3. Sparse Temporal Disaggregation

Despite the popularity of Chow and Lin (1971) to compile national accounts across
Europe (Eurostat, 2018), the method runs into several shortcomings when operating in
data-rich environments NSIs now find themselves in. In moderate and high dimensions,
the behaviour of the Chow-Lin procedure faces several statistical challenges: a) excessive

variance in β̂ impacts interpretation as all indicator series are included in the model by
default; b) inconsistent estimation of the AR(1) parameter ρ leads to poor performance
in estimating the high frequency series; c) unreliable estimation of σ2 leads to uncertainty
in estimating β; d) lack of interpretation into which indicator series are most relevant.
Furthermore, when p > n, the matrix XT

l V
−1
l Xl needing to be inverted in (2) becomes

rank-deficient and thus a unique inverse no longer exists, and so a disaggregated estimate
cannot be found.

To resolve the aforementioned shortcomings of current temporal disaggregation meth-
ods, we provide a general regularised M-estimation framework that allows us to encom-
pass a variety of penalty functions in the Chow-Lin regression framework to accomplish
temporal disaggregation in moderate and high dimensions. Specifically, we propose to
study estimators of the form:

β̂ = arg min
β∈Rp

{∥∥∥V −1/2l (yl −Xlβ)
∥∥∥2
2︸ ︷︷ ︸

Chow-Lin Cost Function

+ Pλ(β)︸ ︷︷ ︸
Regulariser

}
. (5)

This estimator incorporates a regularising penalty function in conjunction with the classic
Chow-Lin cost function to encode the assumption of sparsity. It does this by shrinking
coefficients of indicator series, β, towards zero that cause a large least squares score in the
Chow-Lin cost function. By doing so, we simultaneously select important indicator series
and estimate their regression coefficients with sparse estimates. This will significantly
reduce the variance in moderate dimensions and enable accurate estimators in high
dimensions.

The regulariser function, Pλ(β), is indexed by the regularisation parameter λ ≥ 0 that
controls the degree of shrinkage. This function may take various forms depending on the
assumptions required by the user, see Bühlmann and Van De Geer (2011) for options.
We study the the LASSO penalty by Tibshirani (1996) in our work, i.e. Pλ(β) = λ||β||1,
due to its desirable property of yielding sparse estimates while maintaining convexity.
The algorithm we propose is as follows:

1. Temporally aggregate the indicators via C and perform a GLS rotation of the data

using an initial value ρ ∈ (−1, 1). I.e. we are working with y = V
−1/2
l yl and

X = V
−1/2
l Xl.
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2. Use the Least Angle Regression (LAR) algorithm by Efron et al. (2004) to compute

full piecewise linear solution paths β̂λ for a range of λ.
3. Re-fit the selected sparse support from β̂λ back into least squares to de-bias the

LASSO estimates.
4. Tune the model for λ using Bayesian Information Criterion (BIC) (Schwarz, 1978)

using degrees of freedom equal to Kλ = |{r : β̂(λ)r 6= 0}| and variance estimator

σ̂2 = ||V −1/2l (yl −Xlβ̂(λ))||22/2(n−Kλ).
5. Optimise over ρ ∈ (−1, 1) and use ρ̂

4. Simulation Study and GDP Data Application

We perform an extensive simulation study of several parameter scenarios and deliver
accurate estimates in the high dimensional setting and a great improvement on Chow-
Lin in standard dimensional settings. We consider annual-to-quarterly disaggregation
using n = 100 years, with p = 30 or 90 for standard dimensions and p = 150 for high
dimensions. We consider ρ = 0.2, 0.5 and 0.8 for low, medium and high auto-correlation
present in the residuals and also consider both stationary and non-stationary time series
for yh and Xh. Figure 1 (a) and (b) show the improved performance of our approach
both with and without the re-fit step (in step 3 of algorithm) on Chow-Lin in standard
dimensions using p = 30 and 90 respectively in estimating yh. While Figure 1 (c) shows
our accurate performance when p = 150.
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Fig. 1: Boxplots comparing RMSE values of ŷh for CL, spTD and spTD RF. Where a,
b and c represent p = 30, 90 and 150 respectively.

As described in Section 1, we attempt to perform a quarterly-to-monthly disaggrega-
tion of UK national GDP and assess performance against the published monthly GDP
index developed by the ONS. Using data from 2008 Q1 to 2020 Q2 (n = 50 quarters),
we compare our performance against Chow-Lin using 10 monthly indicator series and
assess how well we do using 97 monthly indicator series; the high-dimensional setting.
We obtain a lower RMSE than Chow-Lin (985.13 compared to 1055.74) when using
10 indicator series in estimating monthly GDP and even greater performance in the
high-dimensional setting (RMSE = 749.63) showing the advantage of working in high-
dimensions. Not only do we get more accurate estimates, our method informs us on the
most relevant indicator series used to derive the estimates; informing us on the main
driving forces behind monthly GDP.
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