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Abstract

For decades, methodologies attempting to use efficiently the available auxiliary information
have attracted a lot of attention in the survey sampling literature. At the estimation stage,
model-assisted estimators have been widely used for that purpose. Many authors have shown
that model-assisted estimators maintain important design properties such as asymptotic consis-
tency and unbiasedness irrespective of whether or not the working model is correctly specified.
Yet, nowadays, survey practitioners face the emergence of high-dimension data sets. Therefore, a
more realistic framework would be to consider that the number of auxiliary variables grows as the
population and sample sizes increase. In this article, we adopt this asymptotic framework and es-
tablish the consistency rate of model-assisted estimators based on linear unpenalized and penalized
regression as well as on tree-based methods towards finite population totals. We also conducted
a large simulation study on real electricity consumption data to compare the efficiency of various
model-assisted estimators in high-dimensional models and several sampling designs.
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1 Introduction

Over the last twenty years, survey practitioners witnessed the emergence of data sets of always increas-
ing sizes. With the development of automatic data collection devices, it is no longer unusual to observe
data sets containing a very large number of auxiliary variables which raise new estimation challenges.
In this configuration, some traditional predictors (e.g. linear regression, k-nearest neighbors, ...) tend
to break down as the number of covariates increases. The high-dimensional framework in statistical
learning is an active area of research, with many open problems yet to be investigated. For some pre-
dictors such as linear regression ones, however, high-dimensional properties have been established, see
e.g. Portnoy (1984), among others. As one could expect, it has been demonstrated that the number
of covariates plays an important role in the asymptotic properties of the studied predictors. Since
model-assisted estimators are constructed upon predictors, it should be expected that their properties
depend on the dimension parameter as well. Nonetheless, to our knowledge, this research area has
attracted only little attention yet. Notable exception are Cardot et al. (2017) who studied dimension
reduction through principal component analysis and established the design consistency of the resulting
calibration estimator and Ta et al. (2020) who investigated the properties of the GREG estimator and
lasso model-assisted estimator from a model point of view. In this paper, we adopt a design approach
and study the convergence rate in high-dimensional settings of the GREG estimator, commonly used
penalized estimators such as lasso, ridge or elastic-net, and tree based methods with regression trees
and random forests.
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2 Set-up

Before stating our main results, a few notations are needed. Let U denote the finite population of
interest of size N . We denote by Y the survey variable and we aim to estimate the finite population
total ty =

∑
i∈U yi, where yi denotes the measurement of the survey variable Y for element i. We

select a sample S of size n according to a sampling design p(·). The first order inclusion probabilities
are denoted by πi = P(i ∈ S) > 0, i ∈ U . Without additional information, one could use the design-
unbiased Horvitz-Thompson estimator

t̂ht =
∑
i∈S

yi
πi
.

However, in many cases, more information is available. In particular, we assume that we have access
to the measurements of p auxiliary variables X1, ..., Xp for all the population units; we denote by
xi = [xi1, ...., xip]

> the vector containing the measurements of the auxiliary variables for element
i ∈ U . Model-assisted estimation starts with postulating the following working model:

ξ : yi = f(xi) + εi, i ∈ U, (1)

where f(xi) = Eξ [yi|xi] and the errors εi are independent random variables such that Eξ [εi|xi] = 0

and Vξ (εi|xi) = σ2 for all i ∈ U . The unknown function f(·) is estimated by f̂(·) and using the sample
data Dn = (xi, yi)i∈S . The fitted values f̂(xi), i ∈ U, are then used to construct the model-assisted
estimator for ty based on f̂ :

t̂ma(f̂) =
∑
i∈U

f̂(xi) +
∑
i∈S

yi − f̂(xi)
πi

. (2)

3 Model-assisted estimators in high-dimensional settings

Linear regression is probably one of the most studied method in statistics and model-assisted estimators
based on linear models have been extensively studied and used in practice (Särndal et al., 1992). The
method is easy to analyze and it can be used to represent more abstract non-parametric predictors. In
its simplest form, linear regression aims at estimating the unknown linear regression function f(x) =
x>β by a function f̂lr linear in the covariates, that is,

f̂lr(x) = x>β̂lr,

where the regression coefficient estimator β̂lr is obtained from survey data Dn by using a least-square
criterion as follows:

β̂lr = argmin
β∈Rp

∑
i∈S

(yi − x>
i β)

2

πi
. (3)

The well-known model-assisted estimator or GREG estimator is obtained by plugging f̂lr in (2), namely
t̂greg = t̂ma(f̂lr).

We are interested in studying the asymptotic behavior, such as asymptotic consistency and bias
computed with respect to the sampling design p(·), of several model-assisted estimators in presence of
a large number of auxiliary variables. We consider for that the asymptotic framework as introduced
by Isaki and Fuller (1982) which allows for the population and sample sizes, nv, Nv to grow to infinity
when v → ∞. In this paper, we consider that the number of auxiliary variables pv is also growing to
infinity. Very mild regularity conditions on the sampling design, the survey variable and the auxil-
iary information are also supposed, some of these assumptions being extensions to high-dimensional
framework of those considered in Robinson and Särndal (1983) (see Dagdoug et al. (2020) for more
details).

Result 3.1. Let consider a sequence {t̂greg}v∈N of GREG-estimators for ty. Then,

1

Nv
(t̂greg − ty) = Op

(√
p3v
nv

)
.
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In statistical learning, penalization methods are used for improving the ordinary least square esti-
mator of the regression coefficient in presence of a large number of covariates. As before, the prediction
at a point x is given by a linear combination of the auxiliary variables, but he unknown regression
coefficient is estimated by a different criterion than the one used in (3). More precisely, we define
f̂pen(x) = x>β̂pen, where the regression coefficient estimator β̂pen is obtained from survey data Dn

with the following penalized criterion:

β̂pen = argmin
β∈Rp

∑
i∈S

1

πi

(
yi − x>

i β
)2

+
t∑

`=1

λ`||β||γ`ν` , (4)

where t ∈ N, ν` ∈ N and γ` ∈ R+ are constants chosen before the estimation and λ` ∈ R+ are
the regularization parameters usually computed by cross-validation. Common choices include t = 1,
γ1 = ν1 = 1 for the lasso; t = 1, γ1 = ν1 = 2 for ridge; t = 2, γ1 = ν1 = 1, γ2 = ν2 = 2 for the
elastic-net. The lasso or the elastic-net methods have the effect of shrinking some coefficients to zero
and therefore they can be seen as variable selection methods as well. Plugging f̂pen in (2) leads to the
penalized model-assisted estimator denoted by t̂pen = t̂ma(f̂pen).

Under the same assumptions as required by result 3.1, we can show that the penalized estima-
tor t̂pen = t̂ma(f̂pen) is consistent whenever the GREG estimator is, and that, they share the same
convergence rate (Dagdoug et al., 2020). Under supplementary assumptions on the auxiliary informa-
tion, it is possible to get the improved convergence rate

√
pv/nv for the ridge estimator defined as

t̂ridge = t̂ma(f̂ridge).

Result 3.2. Consider a sequence of penalized model-assisted estimators {t̂ridge}v∈N of ty. Then,

1

Nv
Ep
∣∣∣∣t̂ridge − ty∣∣∣∣ = O(√ pv

nv

)
.

Linear regression and regularized regression are efficient whenever the regression function belongs
to the set of functions linear in the auxiliary variables X1, X2, ..., Xp. However, when this is not the
case, these method may break down. The aforementioned asymptotic results on t̂greg and t̂pen will
hold even for misspecified models, but their design variance will be large in such cases. To remedy
this issue, one could use non-parametric models. While some of them are known to be sensitive to the
curse of dimensionality (e.g. k-nearest neighbors, splines based methods, kernels, ...), others, such as
tree based methods, are more robust to high-dimensional frameworks. Interestingly, linear regression
and tree-based methods are very closely linked. That is, a tree based method can be described as a two
step process where the first step is dedicated to the creation of a new set of covariates Z1, Z2, ..., ZT
based on Dn, and the second step consists in estimating the coefficients of the linear regression of Y
on these new covariates. More precisely, a regression tree algorithm can be implemented as follows:

1. Use a data partitioning algorithm (e.g. CART, C4.5, ...) which takes as input Dn and outputs a
partition P = {A1,A2, ...,AT } of Rp, where each element of P, called a terminal node, contains
at least n0 sample observations.

2. Define new covariates Z1, Z2, ..., ZT based on terminal nodes, Zj = (zij)i∈S with zij = 1xi∈Aj

for all j = 1, . . . , T. The estimation of f with a regression tree and based on sample data Dn is
f̂tree(x) = x>β̂tree where

β̂tree = argmin
β∈RT

∑
i∈S

1

πi
(yi − z>i β)

2,

where zi = (zij)
T
j=1.

In Result 3.2, ridge regression was shown to converge faster than linear regression. The intuition
behind this result is that the length of the vector of estimated coefficients β̂ridge is, in some sense,
increasing slower than the length of the vector β̂lr. Interestingly, the length of β̂tree is a function of
T, the number of terminal nodes and not depending on the number of auxiliary variables. Next result
uses this intuition to formalize a convergence rate independent of the dimension for a model-assisted
estimator t̂tree = t̂ma(f̂tree) based on a tree and obtained by plugging f̂tree in (2).
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Result 3.3. Consider a sequence of tree model-assisted estimators {t̂tree}v∈N for ty. Then,

Ep
[

1

Nv

∣∣∣∣t̂tree − ty∣∣∣∣] = O( 1
√
nv

)
+O

(
1

n0v

)
.

Therefore, provided that there are enough elements in each terminal nodes and independently of
the dimension, t̂tree is square root consistent. The same result can be shown also for more complex
tree-based methods such as random forests, see Dagdoug et al. (2020) for more details.

4 Simulation study

For a more thorough investigation and comparison of model-assisted estimators, we have conducted a
large simulation study on high-dimensional real data by considering many different linear or non-linear
relationships between survey variables and the auxiliary ones. We were interested in estimating the
finite population totals of the so created survey variables and we have considered a wide range of
model-assisted estimators such as based on linear regression, penalized regression with lasso, ridge and
elastic-net, principal component regression, regression trees, random forests, Cubist, gradient boosting,
k-nearest neighbors. We have also tested the behavior of all these estimators, in terms of relative bias
and relative efficiency with respect to the Horvitz-Thompson estimator, in presence of high number of
auxiliary variables. We used both equal and unequal sampling designs in the simulation study.

Overall, Cubist and penalized regression estimators were the most efficient. Random forests, XG-
Boost, principal component regression, and, to a lesser extent, k-nearest neighbors, also improved on
the Horvitz-Thompson estimator in most cases. Our results also illustrated several notable facts. First,
whether or not the survey variable was linear in the auxiliary variables, the estimator based on linear
regression was the most impacted in presence of a very large number of auxiliary variables whatever
the sampling design. Another interesting finding was the fact that for unequal sampling designs, the
model assisted estimator based on random forest may exhibit large bias if the hyper-parameters are
not well-chosen (more precisely, if the design variables are not sufficiently taken into account). For
more details on this topic, see Dagdoug et al. (2020).
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