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Abstract

We consider a sequential criticality test (SCT) for branching process with immigration. Ob-
servations are collected sequentially as time goes by. Using a stopping time based on the observed
Fisher information, SCT is found to be a Z-test for local alternatives including sub- and super-
critical hypotheses. The joint density and Laplace transform of the test statistics and stopping
time are obtained from the joint Laplace transform with respect to a Bessel process driven by
Dambis-Dubins-Schwartz (DDS) Brownian motion. The joint density can be expressed as a for-
mula including parabolic cylinder functions. Since the joint density are not suitable for computing
the joint moments, we obtain the joint Laplace transform. Numerical studies are conducted to
verify our asymptotic results.
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1 Introduction and model setting

We consider sequential test for the criticality of branching processes with immigration. Suppose
{ξn,k}n,k∈N and {Yn}n∈N are independent, nonnegative, integer-valued random variables with mean
and variance

(
m,σ2

)
and

(
λ, σ2

Y

)
respectively. Let {Zn} be the nth generation size of a Galton-Watson

processes;

Zn =

Zn−1∑
k=1

ξn,k + Yn, n ∈ N, (1)

where ξn,k is the number of offspring of the kth individual belonging to nth generation and Yn is the
number of the immigration in the nth generation. The initial value Z0 is a random variable which is
independent of {ξn,k}. Sriram, Basawa, and Huggins (1991) considered the fixed accuracy sequential
estimation of offspring mean m using the stopping time based on the observed Fisher information. We
consider a sequential testing problem for criticality of m.

We consider models with local parameters;

Under P 0 :
(
m,σ2

)
=
(
1, σ2

)
, Under P δ :

(
m,σ2

)
=
(
1 + δ/

√
c, σ2

c

)
,

with assumption σ2
c → σ2, as c → ∞. The hypotheses for sub- and super-critical tests are

H0 : δ ≥ 0 vs H1 : δ < 0, H0 : δ ≤ 0 vs H1 : δ > 0. (2)

Suppose we have a sample (Zn, Yn), n = 1, 2, . . . , N from (1). When
{
ξ
(n)
k

}
and {Yn} have power

series distributions P
(
ξ
(n)
k = j

)
= ajθ

j/A(θ) and P (Yn = k) = bkϕ
k/B(ϕ), the M.L.E. m̂N and the
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observed Fisher information of m are

m̂N =
N∑

n=1

(Zn − Yn) /
N∑

n=1

Zn−1, IN (m) =
N∑

n=1

Zn−1/σ
2. (3)

Define a stopping time based on the observed Fisher information of m; for c > 0,

τc ≡ inf

{
N > 1 :

N∑
n=1

Zn−1/s
2
N ≥ c

}
. (4)

where s2N is a natural estimator of σ2 written as

s2N =
N∑

n=1

1{Zn−1>0} (Zn − Yn − m̂NZn−1)
2
/(NZn−1). (5)

In (4), c controls for the accuracy of estimation, which could be predetermined by empirical researchers.
The test statistics is defined as

δ̂τc ≡
√
c (m̂τc − 1) . (6)

We investigate the asymptotic properties of the sequential testing procedure (δ̂τc , τc).

2 Continuous-time model and joint asymptotic behavior of (δ̂τc , τc)

Next we approximate the above discrete-time models to the continuous-time models. Let mc = 1 +
δ/
√
c → 1 and σ2

c → σ2 as c → ∞. We also let Z0/
√
c → x0 as we would like to know the effect of

initial value. Then, the branching process (1) converges to a Feller process

Z⌊√ct⌋/
√
c ⇒Xt ≡ x0 + σ

∫ t

0

√
XsdWs + δ

∫ t

0

Xsds+ λt (7)

where “⇒” stands for weak convergence and W is a standard Brownian motion. For δ = 0, letting
qt = 4Xt/σ

2, we obtain the squared Bessel process with dimension 4λ/σ2;

qt = q0 + 2

∫ t

0

√
qsdWs + 4λt/σ2. (8)

The hypotheses (2) are reduced to in continuous time;

Under P 0 : dXt = σ
√

XtdWt + λdt,

Under P δ : dXt = σ
√

XtdWt + (δXt + λ) dt.

Using a Girsanov transformation dW̃t = −δXtdt/σ + dWt, the likelihood process is represented as

dP δ/dP 0 = exp

(
δ

∫ t

0

(√
Xs/σ

)
dWs − δ2/2

∫ t

0

Xs/σ
2ds

)
.

Then, we have the M.L.E. and observed Fisher information of δ,

δ̃t = δ + σ

∫ t

0

√
XsdW̃s/

∫ t

0

Xsds, Ĩt =

∫ t

0

Xs/σ
2ds,

which corresponded to the limit of the N (m̂N − 1) and the observed Fisher information in discrete
time in (3) with t = 1.
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Define martingale Mt and its quadratic variation ⟨M⟩t as

Mt ≡
∫ t

0

√
Xs/σ2dWs, ⟨M⟩t =

∫ t

0

Xs/σ
2ds. (9)

According to Theorem 7.2 in Ikeda and Watanabe (1989) p.85, letting

Uv ≡ inf
{
t ≥ 0 : ⟨M⟩t = v

}
= ⟨M⟩−1

v , (10)

⟨M⟩Uv
= v and Bv ≡ MUv

becomes a Brownian motion. Bv is so-called a time-changed (or DDS)
Brownian motion. Let

ρv ≡ XUv/σ
2 = d ⟨M⟩ /dt|t=Uv , (11)

then we can obtain the main theorem as follows.

Theorem 1. Suppose Zn is generated by the model (1) with an initial value Z0 satisfying Z0/
√
c → x0.

Then the asymptotic behavior of the stopping times τc in (4) and the sequential test statistics δ̂τc is
given as follows: as c ↑ ∞,(

δ̂τc , τc/
√
c
)
⇒

(
δ +

∫ U1

0

XsdWs, U1

)
=

(
δ +B1,

∫ 1

0

ρ−1
s ds

)
(12)

where Bt is a standard Brownian motion, U1 ≡ inf
{
t :
∫ t

0
Xs/σ

2ds = 1
}
, and ρt is the Bessel process

with drift δ, dimension d = 2λ/σ2 + 1, and initial value ρ0 = x0/σ
2;

dρt = (
λ/σ2

ρt
− δ)dt+ dBt. (13)

The joint Laplace transform of (ρv, Uv) under H0 can be obtained from the time change of the
squared Bessel process qt in (8) with q0 = 4x0/σ

2 = 4ρ0;∫ ∞

0

e−γvE0
q0 [exp (−αρv − βUv) /ρv] dv =

∫ ∞

0

e−βtE0
q0

[
exp

(
−α

4
qt −

γ

4

∫ t

0

qsds

)]
dt. (14)

Using the Bessel bridge in Pitman and Yor (1982), under H0 we can obtain,

Pq0

(∫ u

0

ρ−1
s ds ∈ dt, ρu ∈ dz

)
=

zν+1

qν0
isu (2ν, t/2, 0, q0 + z,

√
q0z) dtdz,

with ν = d/2− 1 = λ/σ2 − 1/2. isu function is special inverse Laplace transform defined as

isu (ν, t, r, z, x) = Lγ
−1

[( √
2γ

sinh
(
t
√
2γ
)) exp

(
−r
√
2γ − z

√
2γ coth

(
t
√

2γ
))

Iν

(
2x

√
2γ

sinh(t
√
2γ)

)]
.

where Iν is the modified Bessel function. See Borodin and Salminen (2002) for the expression of isu
function which includes parabolic cylinder functions. Using Girsanov’s theorem, we can obtain the
joint probability densities of (ρv, Uv) under H1 with initial value.

The joint Laplace transform can also be obtained as

E0
q0 [exp (−αρv − βUv) /ρv] =

∞∑
n=0

∞∑
j=0

∞∑
l=0

qn0α
jβl

n!j!l!

∫ 1

0

J(t, v, n, j, l)dt, (15)

with

J(t, v, n, j, l) =
(−1)n

(
1−

√
s
)j+n (√

s+ 1
)−j−ν−n−1

s
ν−3
4 logl(s)(−n− ν − 1)(j)

Γ
(
1
2
(j + l − n+ 1)

)
×2

1
2
(−j−3l−3n−1)+νv

1
2
(j+l−n+1)−1

2F1

(
−j,−n;−j − n− ν;

(√
s+ 1

)2(√
s− 1

)2
)

where x(m) is the factorial power and 2F1 is Gauss hypergeometric function. Using Girsanov’s theorem,
we can obtain the joint Laplace transform of (ρv, Uv) under H1.
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3 Simulation results

In Monte Carlo simulation, we let ξ
(k)
n ∼ i.i.d. Negative Binomial (k, p) and Yn ∼ i.i.d. Poisson (λ)

replication= 10, 000 and set initial value x0 = 0, 1, m = 0.99, 1, 1.01, k = 5, λ = 10. It is easy to
show p = k/ (m+ k) and σ2 = m + m2/k. The table provides rejection rates (RRs), and the the
operating characteristics (OCs): means and standard deviations of τc and m̂τc with theoretical values
in parentheses. The rejection rates are close to the theoretical values obtained from the standard
normal table. Although the mean stopping times are foretasted well by the numerical values from
the joint Laplace transform, their theoretical standard deviations turn out to be smaller than the
simulation results. We also note that m̂τc can be estimated with the standard deviations equal to the
fixed accuracy 1/

√
c.

Table 1: Rejection rates (RRs) and OCs: m = 0.99, 1, 1.01
x0 = 0 x0 = 1

m
√
c

RR(%) τc m̂τc RR(%) τc m̂τc

Left Right Mean sd Mean sd Left Right Mean sd Mean sd

1

100 5.9 5.6 49.0 7.0 1.00 0.011 5.7 5.6 40.0 7.5 1.00 0.011

(49.7) (5.0) (0.01) (40.7) (4.7) (0.01)

200 5.1 5.5 98.9 12.2 1.00 0.0051 5.5 5.5 80.6 12.1 1.00 0.0051

(99.5) (10.0) (0.005) (81.4) (9.3) (0.005)

0.99

100 26.4 52.7 8.15 0.99 0.0105 26.7 43.5 8.40 0.99 0.0104

(26.0) (54.2) (5.72) (0.01) (26.0) (44.9) (5.41) (0.01)

200 64.0 116.9 15.64 0.99 0.0051 63.8 97.8 15.91 0.99 0.0051

(63.9) (118.8) (13.04) (0.005) (63.9) (99.8) (12.53) (0.005)

1.01

100 26.7 45.7 6.41 1.01 0.0106 26.8 36.9 6.63 1.01 0.0106

(26.0) (45.9) (4.43) (0.01) (26.0) (37.2) (4.05) (0.01)

200 63.7 85.7 9.72 1.01 0.0051 62.4 68.4 9.49 1.01 0.0051

(63.9) (85.4) (7.85) (0.005) (63.9) (68.4) (7.05) (0.005)

4 Conclusion

We develop the sequential testing method of near criticality hypothesis for branching process with
immigration. We consider diffusion approximations and derive the asymptotic results for OC’s by
using the time change methods under the null. The joint density and Laplace of the stopping time
and the sequenital test statisitics under the null can be transformed to the joint density and Laplace
transform under the local alternatives via Girsanov’s theorem. OC’s can be computed by using the
joint densities and Laplace transform of Bessel processes.

References
[1] Borodin A. N. and P. Salminen (2002). Handbook of Brownian Motion - Facts and Formulae (2nd

Edition), Birkhaeuser

[2] Ikeda N. and S. Watanabe (1989), Stochastic differential equations and diffusion processes, 2nd
edition, Kodansha/North-Holland.

[3] Pitman and Yor(1982). A Decomposition of Bessel Bridges. Z.W 59, 425-457.

[4] Sriram, T.N., I. V. Basawa, R. M. Huggins (1991). Sequential Estimation for Branching Processes
with Immigration, Annals of Statistics, Vol. 19, 2232-2243

4

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000730




