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Abstract

Vapor pressure is a temperature-dependent characteristic of pure liq-
uids, and also of their mixtures. This thermodynamic property can be
characterized through a wide range of models. Antoine’s equation stands
out among them for its simplicity and precision. Its parameters are es-
timated via maximum likelihood with experimental data. Once the pa-
rameters of the equation have been estimated, vapor pressures between
known values of the curve can be interpolated. Other physical properties
such as heat of vaporization can be predicted as well.

The probability distribution of a physical phenomenon is often hard
to know in advance, as it depends on the phenomenon itself as well as the
procedures to carry on the experiments and the measurements. Hence,
assuming a probability distribution for such events has to be done with
caution, as it affects the Fisher Information Matrix and consequently the
optimal designs. This work presents D−optimal designs to estimate the
unknown parameters of the Antoine’s equation as accurately as possible
for homoscedastic and heteroscedastic normal distribution of the response.
In both cases, the aim is to improve the precision of inferences using
D−optimality criterion.

Finally, the effects of common transformations towards a partial lin-
earisation of either models on the optimal designs are explored. Experi-
menters should have in mind that fitting those models may have implica-
tions that need to be considered when using these procedures.

Keywords— Heteroscedasticity, D-optimality, Logarithmic Transformation, Efficiency

1

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000723



1 Antoine’s Equation

The influence of temperature on the vapor pressure of pure liquids and their mix-
tures is derived from a class of semi-empirical equations known as Antoine’s equa-
tion. This equation was developed and presented in 1888 by Louis Charles Antoine,

P (T ) = η(T, θ) + ε = 10a− b
c+T + ε. It represents the non-linear thermodynamic rela-

tionship between equilibrium vapor pressure, P , and temperature, T [3]. The unknown
parameters θ = (a, b, c)t are numerical constants related to the enthalpy and entropy
of vaporization. The parameters vary for different pure substances.

1.1 Homoscedastic model

The first considerations regarding this model are done with the normal homoscedastic
distribution. This is the baseline and common suspect when no information about the
distribution or enough experimental data are available. The model to be considered
with this assumption would be

P (T ) = η(T, θ) + ε = 10a− b
c+T + ε, ε ∼ N (0, σ2), (1)

which, with the usual first order Taylor expansion, commonly used to work with non-
linear models in optimal experimental design, would have the one-point Fisher Infor-
mation Matrix (FIM)

Mo(ξ) =
1

σ2

∂η(T, θ)

∂θ

∂η(T, θ)

∂θT
.

Often, in experimental procedures [1], logarithms are taken to obtain a linearly
separable problem. To have an actual model, the expectation of the logarithm of the
response is approximated by the logarithm of its mean, i.e., the logarithm of the model

log[P (T )] = E(log[P (T )]) + ε ≈ log[η(T, θ)] + ε, ε ∼ N (0, σ2/η(T, θ)2), (2)

and in an equivalent way this produces the one-point FIM

Mlo(ξ) =
∂η(T, θ)

∂θ

∂η(T, θ)

∂θT

(
2

η(T, θ)2
+

1

σ2

)
.

1.2 Heteroscedastic model

Empirical experiences suggest that the errors are, indeed, normal. However, it is
remarked that the relative error is deemed constant, instead of the absolute error [1].
This is equivalent to error proportional to the response. The implications are that the
response variance on this scenario is heteroscedastic, an hence the model results

P (T ) = η(T, θ) + ε = 10a− b
c+T + ε, ε ∼ N (0, λ2η(T, θ)2), (3)

with a FIM expression given by

Me(ξ) =
∂η(T, θ)

∂θ

∂η(T, θ)

∂θT

(
2

η(T, θ)2
+

1

η(T, θ)2λ2

)
=

2λ2 + 1

λ2

∂η(T, θ)

∂θ

∂η(T, θ)

∂θT
1

η(T, θ)2
.

As in the homoscedastic case, logarithm can be taken, with an analogous approxima-
tion

log[P (T )] = E(log[P (T )]) + ε ≈ log[η(T, θ)] + ε, ε ∼ N (0, λ2), (4)
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which has a FIM proportional to the heteroscedastic model

Mle(ξ) =
∂η(T, θ)

∂θ

∂η(T, θ)

∂θT
1

η(T, θ)2
,

and therefore the optimal designs for both the original heteroscedastic model and
logarithmically transformed one are the same.

2 D−Optimal Designs

Regarding D−optimality there are some theoretical results that can be proved for
these models. Considering 1.1 or 1.2 leads to sensitive changes either in the estimators
or the optimal designs.

In the homoscedastic case, given by Equation (1), the following result holds:

Theorem 1. The D-optimal design for Antoine’s Equation homoscedastic model is
supported at three points, one of them in the boundary of X .

The analytical expression of the D−optimal design has been calculated. Depending
on the values of the unknown parameters b and c and the superior extreme of the design
space X there are two options.

1. Two interior points of the design space and the superior extreme

ξ?D =

{
T ?
1 T ?

2 Tmax

1/3 1/3 1/3

}
,

2. Both extremes of the design space and an interior point

ξ?D =

{
Tmin T ??

2 Tmax

1/3 1/3 1/3

}
.

Analytical expressions for both cases have been obtained.
While for the heteroscesdastic case, given by Equation (3), a similar result holds:

Theorem 2. The D-optimal design for Antoine’s Equation heteroscedastic model is
supported at three points. Both of the extremes of X are support points of the design.

The inner support point of the D−optimal design is

T2 =
cTmax + cTmin + 2TmaxTmin

2c+ Tmax + Tmin
.

3 Example: Water in liquid state

Considering the case of water at liquid state, that is, X = [1, 100], and best guesses
of the unknown parameters a = 8.07131, b = 1730.63 and c = 233.426 [2], the
D−optimal designs have been computed. For the homoscedastic model, Equation
(1), the D−optimal design is

ξ?o =

{
44.90 83.20 100
1/3 1/3 1/3

}
, (5)
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and its logarithm model’s D−optimal design, Equation (2), with a value of σ2 = 9, is

ξ?lo =

{
44.89 83.20 100
1/3 1/3 1/3

}
. (6)

The heteroscedastic model, displayed in Equation (3) has the same D−optimal
design as its logarithm, Equation (4), which is

ξ?e =

{
1 41.76 100

1/3 1/3 1/3

}
. (7)

The goodness of a design can be measured with their efficiency. This can be
interpreted as how much information, with the same number of replications, a design
gives compared to the other. The expression of the efficiency for D−optimality is
effD(ξ, ξ?) = (|M(ξ)|/|M(ξ?)|)1/m, with m the number of unknown parameters.

The cross efficiencies table of the designs, that allows a comparison of them, is

Efficiency ξ?o ξ?lo ξ?e
eff(·, ξ?o) 100 99.9 25.4
eff(·, ξ?lo) 99.9 100 30.7
eff(·, ξ?e ) 18.7 18.7 100

Table 1: Cross efficiencies of the D−optimal designs for the homoscedastic,
heteroscedastic and logarithm models of the Antoine’s Equation.

4 Conclusions

Sometimes overlooked, probability distributions are a capital part of Optimal Design
of Experiments. As it is showcased in this work, a different variance structure of
the response can substantially change the optimal design for the same model, with
a resulting impoverished efficiency when there is a misspecification of the probability
distribution of the response. When possible, different reasonable assumptions must be
taken to account by the scientists as well as make comparisons.

There are also strategies to find designs with a compromise between different cri-
teria or, as in this case, different probability distribution. These allow to find robust
designs with a reasonable efficiency for the different scenarios considered. Future work
will delve into how to develop and apply the strategies to this and other real problems.
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