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Abstract

We propose novel conditional autoregressive Wishart models for high-dimensional realized covariance matrices of
asset returns. We incorporate measurement errors into realized variance dynamics of Realized Dynamic Conditional
Correlation model. It is well known that the measurement errors make the realized volatility less persistent than
the latent volatility process. Therefore, by introducing measurement errors into realized volatility, the persistence
of realized volatility based on the magnitude of the corresponding measurement errors can be incorporated into
the multivariate model. Our empirical analysis performs out-of-sample evaluations for 100 stocks on the Tokyo
Stock Exchange from January 1, 2014, through December 31, 2020. Our model based on logarithmic realized
volatility shows the best forecast performance across test periods and loss functions.
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1 Introduction

Forecasting and modeling covariance matrices of asset returns are fundamental elements in financial practices. The
multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) models are used to estimate
conditional covariance matrices from asset returns (Bauwens et al., 2006). MGARCH models treat covariance
matrices as latent, but a recent alternative uses high-frequency data to estimate a realized covariance (RC)
measures for low-frequency returns precisely (Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004).
These estimators which are estimated by high-frequency data can be modeled directly. Forecasting models using
RC measures can obtain more accurate predictions than the MGARCH models (Golosnoy et al., 2012).

The BEKK-type conditional autoregressive Wishart (CAW) model proposed by Golosnoy et al. (2012) guaran-
tees the positive definiteness of forecast covariances without constraining parameters by assuming a conditional
Wishart distribution across an entire RC matrix. BEKK-type models are difficult to apply to high-dimensional co-
variance matrices because of their greater number of parameters. Bauwens et al. (2012) adopted the assumptions
of the CAW model and proposed realized dynamic conditional correlation model (Re-DCC). Then Bauwens et al.
(2012) provided an empirical analysis for 50 assets.

A realized volatility (RV) measure estimated from high-frequency data is a consistent estimator of a latent
volatility under a high-frequency setting, but it is subject to measurement error for any finite sample. Therefore,
RV equals the sum of two elements: the latent volatility and a measurement error. Attenuation bias arises because
the directly observable realized measure process has less persistence than has the latent volatility (Bollerslev et
al., 2016). To address that problem, Bollerslev et al. (2016) proposed HARQ model and Hizmeri et al. (2020)
proposed a dilution bias correction (DBC) HAR model. Both introduce time-varying autoregressive parameters
that are adjusted, so parameters are large (small) when the variance of the realized measure error is small (large).

In this paper, we propose the novel CAW models that incorporates measurement errors. We extend the the
Re-DCC model to simplify the introduction of measurement errors and make predictions even in high-dimensional
matrices. The Re-DCC model decomposes the scale matrix of the Wishart distribution into variance and cor-
relation. We consider measurement errors within variance dynamics. By incorporating measurement errors into
the estimation of variance dynamics of the Re-DCC model, the persistence of RV improvement and fast mean
reversion considered in the HARQ and DBC HAR models can be incorporated into the multivariate model. We use
100 individual stocks in the Nikkei 225. The out-of-sample evaluation also showed improved predictive accuracy
in many situations. Our proposed model based on log-realized volatility performs best.

2 Realized measures

We consider the n-dimensional log-price process:

X(t) =

∫ t

0

µ(u)du+

∫ t

0

σ(u)dW (u), (1)
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where, µ(u) and σ(u) are instantaneous drift and volatility processes. W (u) denotes the n-dimensional vector of
independent Brownian motion. Σ(u) = σ(u)σ(u)′ is a spot covariance matrix. We exclude jumps for simplicity.

The integrated covariance for the log-price process in Eq. (1) on day t is

Σt =

∫ t

t−1

Σ(u)du. (2)

The integrated covariance cannot be observed directly, but we can estimate it consistently based on intraday
high-frequency data. In this paper, we use the multivariate realized kernel estimator proposed by Barndorff-Nielsen
et al. (2011) as a consistent estimator of the integrated covariance. We estimate the variance of the multivariate
realized kernel (Πt) using Theorem 2 in Barndorff-Nielsen et al. (2011).

3 Model

Let Ct be a consistent estimator for Σt in Eq. (2). We model the n-dimensional stochastic positive-definite
realized covariance measures {Ct}Tt=1. Given the filtration Ft−1 = {Ct−1, Ct−2, . . . }, Ct is assumed to follow the
central Wishart distribution

Ct|Ft−1 ∼ Wn(ν, St/ν), (3)

where ν > n − 1 is the degree of freedom and St/ν is the symmetric, positive definite n × n scale matrix.
In addition, E(Ct|Ft−1) = St is obtained from characteristics of the Wishart distribution. The scale matrix is
decomposed into RV and realized correlation as St = DtRtDt, where Rt is a conditional correlation matrix and
Dt = {diag(St)}1/2 denotes the diagonal matrix in which the conditional standard deviation

√
Sjj,t of asset j

aligns diagonally.
Bauwens et al. (2012) estimate RV dynamics using a GARCH type model and a HAR model. We use the

specification of realized correlation dynamics in Bauwens et al. (2012):

Rt = (1− a− b)R+

p∑
i=1

aiPt−i +

q∑
j=1

bjRt−j ,

Pt = {diag(Ct)}−1/2Ct{diag(Ct)}−1/2,

where 0 ≤ a, 0 ≤ b, 0 ≤ a + b ≤ 1. R is estimated by the sample mean of the realized correlation matrix
(correlation targeting).

3.1 HARQ Re-DCC model

As a proxy for latent volatility, RV is subject to measurement error for a finite sample. Bollerslev et al. (2016)
show that variance of the measurement error of RV is a function of IQ. They proposed the HARQ model, given
that the larger the variance of the measurement error, the smaller the persistence of the observed process.

We propose a HARQ Re-DCC model which apply a HARQ model to conditional variance.

RVt = βc + (βd + αΠ
1/2
t−1)︸ ︷︷ ︸

βd,t

RVt−1 + βwRVt−5|t−1 + βmRVt−22|t−1,

where RVt−h|t−1 = 1
h

∑h
i=1 RVt−i. Also βd, βw, βm are positive. We expect α will be negative. The coefficient of

the daily parameter diminishes when α < 0 and the value of Π1/2 is large. We can construct the HAR model, which
has a time-varying daily parameter, because values of the βd,t parameter vary with the estimated measurement
error variance.

3.2 DBC Re-DCC model

Hizmeri et al. (2020) show that daily realized volatility always has large measurement errors. However, monthly
RV is less affected by the measurement errors than daily RV, and the distribution is centered to zero. That is,
RV generally overestimates integrated volatility in the presence of measurement errors. Thus, they propose DBC
HAR model which takes the absolute value of the difference between the daily RV and the monthly RV as the
relative magnitude of the measurement errors of the daily RV.
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Figure 1: RV and RC between Softbank and Toyota. Gray shaded areas are the out-of-sample period.

We propose a DBC Re-DCC model which apply it to a DBC HAR model for conditional variance:

RVt = βc + {βd + α|RVt−1 −RVt−22|t−1|}︸ ︷︷ ︸
θd,t

RVt−1 + βwRVt−5|t−1 + βmRVt−22|t−1,

where like in the HARQ Re-DCC model, βd, βw, βm are positive and α again is expected to be negative.

3.2.1 Log type model

To guarantee RV is non-negative, we also propose DBC Re-DCC (log), a logarithmic model for RV.

log(RVt) =βc + {βd + α| log(RVt−1)− log(RVt−22|t−1)|}︸ ︷︷ ︸
θd,t

log(RVt−1) + βw log(RVt−5|t−1) + βm log(RVt−22|t−1).

4 Empirical analysis

Our empirical analysis is based on daily realized covariance matrices of 100 individual stocks traded on the Nikkei
225. According to Barndorff-Nielsen et al. (2011), we estimate the multivariate realized kernel.

The sample period starts at January 1, 2014, and ends on December 31, 2020, covering 1624 trading days.
Figure 1 shows realized volatility, realized covariance and realized correlation between Softbank Group and Toyota
Motor. The out-of-sample data is from January 1, 2017, and ends on December 31, 2020.

4.1 Out-of-sample evaluation

We evaluate forecasting performance of the Re-DCC and HAR Re-DCC, and our proposed HARQ Re-DCC and
DBC Re-DCC models. We apply an “insanity filter” to ensure that all forecast values are not less (larger) than
the minimum (maximum) of historical observations (Bollerslev et al., 2018).

To select loss functions, we use the noise robust functions suggested by Patton (2011). We also use the global
minimum-variance portfolio, an economically important indicator. We use the average of loss functions and the
model confidence set (MCS) proposed by Hansen et al. (2011). For the MCS process, we set the significance
level to 20% and use block-bootstrapping with length 25.

Table 1 shows the result of one-ahead forecasting. For QLIKE and GMVP, the DBC Re-DCC (log) model is
selected via MCS process. Also, the DBC Re-DCC model is selected for MSE (Var) and MSE (Corr). However, for
MSE (Cov), MSE (Var) and Frobenius loss, the existing model which are HAR Re-DCC and Re-DCC models are
selected. These model has more accurate in volatile period like light gray area in Figure1. When volatility is high
(inaccurate volatility), the sustainability of daily RV declines in the proposed models after considering measurement
errors. Therefore, when the volatility is continuously high, forecasting accuracy fades, and differences from the
RV increase.
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Table 1: Average daily one-period-ahead forecasting losses : January 1, 2017 - December 31, 2020.

All period : 1/1/2017 - 31/12/2020
Model Order QLIKE GMVP MSE(Cov) MSE(Var) MSE(Corr) Frobenius
HARQ Re-DCC (1,1) 170.2 0.3637 5901 423.6 271.0 11379

(2,2) 163.8 0.3546 6152 259.5 11880
(3,3) 162.6 0.3568 6445 270.4 12467

DBC Re-DCC (1,1) 147.0 0.3282 5985 416.1 254.2 11554
(2,2) 157.7 0.3362 6369 262.0 12322
(3,3) 161.3 0.3376 6073 255.8 11730

DBC Re-DCC (log) (1,1) 103.6 0.2866 6294 416.3 261.1 12171
(2,2) 112.6 0.2964 6603 269.1 12790
(3,3) 110.4 0.2938 6557 266.9 12698

HAR Re-DCC (1,1) 110.7 0.295 6085 404.6 268.0 11766
(2,2) 112.4 0.2956 6077 266.9 11749
(3,3) 109.5 0.2941 6065 267.7 11725

Re-DCC (1,1) 136.2 0.3214 5741 463.1 268.2 11019

(2,2) 122.0 0.3031 4995 417.8 256.2 9571

(3,3) 123.9 0.3057 5375 406.0 266.3 10344
Notes : All values for MSEvar are the all the same in the HAR-type model because the dynamics of realized variance are regardless

of order. Red indicates minimum and the gray shaded values indicate that the 80% MCS process includes the respective model.

5 Conclusion

In this paper, we propose a novel Re-DCC model that incorporates measurement errors for a time series of high-
dimensional realized covariance matrices. We estimated the Re-DCC model by decomposing the scale matrix of
a Wishart distribution into variances and correlation. Our proposed model used HARQ and DBC HAR models
to estimate variance in the Re-DCC model. Doing so made it possible to introduce a time-varying autoregressive
parameter that is adjusted so that the parameter is large when variance of the realized volatility error is small and
large when the variance is small. Incorporating measurement errors into the Re-DCC model makes it multivariate
model with improved persistence and fast mean reversion corresponding to the magnitude of realized volatility
error, as considered in the HARQ and DBC HAR models.

We provided an empirical application to realized covariance measures for 100 stocks in the Nikkei 225. Our
proposed model, particularly the DBC Re-DCC (log) model, provides forecasts superior to benchmarked models.
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