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Abstract Most of the univariate nonparametric control charts existing in the
literature are designed for Phase II analysis, while little has been done in
developing such Phase I control charts. Moreover, typical applications of con-
trol charts involve sub-grouped data, while recent advances have led to more
and more instances where individual measurements are collected over time.
Therefore, more research needs to be done regarding nonparametric Phase I
analysis for small subgroup sizes and even for individual observations. More
recent work dealt with this problem from a change-point model perspective
utilizing rank or likelihood ratio-based statistics. Toward this end, in this
paper, existing Phase I nonparametric control charts - directly applied to in-
dividual data - are compared in order to highlight their properties, pros and
cons, as well as their efficacy under different distributions and shift sizes.
Key words and phrases: change-point model; control charts; individual
data; nonparametric model; Phase I analysis.

1 Introduction

Despite the widely recognized importance of Phase I analysis in Statistical
Process Control (SPC), most of the control charts existing in the litera-
ture are designed for Phase II analysis. For many decades, control charts
could be found typically in manufacturing operation, while as nonmanufac-
turing applications continued to spread, new research challenges inevitably
have arisen. For example, the underlying distribution in nonmanufacturing
processes is usually unknown and not normal. Given these two concerns,
nonparametric control charts are a useful and robust alternative to the prac-
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titioner. Moreover, typical SPC applications involve sub-grouped data, while
recent advances have led to more and more instances where individual mea-
surements are collected over time. In this contribution, a simulation study is
conducted comparing some of the most recent Phase I nonparametric con-
trol charts - developed from a change-point model perspective and directly
applied to individual data - in order to highlight their properties, pros and
cons, as well as their efficacy under different distributions and shift sizes.
For a comprehensive review of the development of Phase I (and/or Phase
II) nonparametric control charts for univariate (and/or multivariate) process
monitoring, up until 2020, the interested reader may refer to Chakraborti
and Graham [2]. The rest of the paper is organized as follows. In Section 2,
we briefly discuss some of the existing univariate change-point model-based
nonparametric control charts. Section 3 is devoted to simulation settings and
results. Finally, in Section 4 some concluding remarks are made.

2 The existing methodologies

The most recently developed univariate nonparametric control charts utilize
rank or likelihood ratio-based statistics, dealing with the problem of Phase I
analysis from a change-point model perspective. Along these lines, Parpoula
[5] investigated the in-control (IC) and out-of-control (OC) performance of
such change-point model-based charts, considering that when the process
is IC (stable), the individual observations are assumed to be independent
and drawn from an unknown but common cumulative distribution function,
whereas when the process is OC (unstable) the observations can be thought
drawn by a general form of a nonparametric multiple change-point model
describing processes subject to step, transient (and even isolated) shifts. Par-
poula [5] examined the typical OC scenario of a step change in the process
mean, assuming three different: a. underlying IC distributions and b. shift
patterns regarding the random positions of the change times. Similar to the
existing literature in which Phase I control charts are evaluated, we consider
here an alternative OC scenario often encountered in practice, i.e., a grad-
ual shift in the process mean. That is, for a given δ, the process mean µ(i),

i = 1, . . . ,m, at the ith observation is defined by µ(i) = µ0 + (i−1)
(m−1) × δσ0,

where µ(1) = µ0 and µ(m) = µ1 = µ0 + δσ0, and µ0 and σ0 are the IC mean
and standard deviation, respectively, of a given distribution. The OC shift
configurations considered here are of size δ = 0.25, 0.50, 1.00, 1.50, 2.00, 3.00
(in units of standard deviations).

We then investigate the performance of existing competing Phase I non-
parametric control charts, that is the Adjusted Generalized Likelihood Ratio
(AdjGLR) test statistic-based chart, as in Parpoula and Karagrigoriou [6];
the RAdjGLR test statistic-based chart (identical to AdjGLR, except that
a preliminary rank transformation of the original data is used), as in Par-
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poula and Karagrigoriou [6]; the Recursive Segmentation and Permutation
(RS P)-based chart (the “level” part of the RS P procedure), as in Capizzi
and Masarotto [1]; the Mann-Whitney (MW) test statistic-based chart, as
in Hawkins and Deng [3]; the Cramer-von-Mises (CvM) and Kolmogorov-
Smirnov (KS) test statistic-based charts, as in Ross and Adams [7]; the Em-
pirical Likelihood Ratio (ELR) test statistic-based chart, as in Ning at al. [4].
Note that all considered charts are able to detect a single or multiple mean
shifts in a sequence of individual observations, as well as both increases and
decreases in the parameter being monitored.

3 Simulation settings & results

We follow similar simulation settings as in Parpoula [5]. Performance is eval-
uated using the probability of giving an alarm that has been estimated by
simulations using 300,000 Monte Carlo replications. Note that 10,000 replica-
tions were used only for the ELR test statistic-based chart, as in Ning et al.
[4], to sustain reasonable simulation execution times. We only consider one
change-point location for the simplicity of the discussion. We set the nomi-
nal False Alarm Probability (FAP) to be 0.005. We consider two sample sizes
m = 50 and m = 100. We consider a standard normal distribution, a negative
exponential distribution of mean equal to 1, and a Student’s t-distribution
with 3 degrees of freedom, as in Parpoula [5]. The simulated IC signal proba-
bilities for all considered charts can be found in Parpoula [5], thus are omitted
here. Under the OC scenario “the process mean undergoes a gradual shift”,
the simulated OC signal probabilities are summarized in Table 1, for a given
sample size, as a function of δ, which is a measure of the shift size.

Table 1 The OC signal probabilities for gradual mean shifts

Normal, m=50 (m=100)

δ(µ0 = 0) AdjGLR RAdjGLR RS P MW CvM KS ELR

0.25 0.011 (0.015) 0.011 (0.016) 0.009 (0.011) 0.009 (0.014) 0.009 (0.012) 0.009 (0.013) 0.006 (0.009)
0.50 0.028 (0.055) 0.030 (0.060) 0.022 (0.042) 0.025 (0.056) 0.025 (0.047) 0.025 (0.045) 0.016 (0.025)
1.00 0.138 (0.354) 0.150 (0.373) 0.117 (0.304) 0.136 (0.363) 0.131 (0.319) 0.116 (0.271) 0.083 (0.162)
1.50 0.406 (0.810) 0.427 (0.820) 0.364 (0.772) 0.405 (0.817) 0.387 (0.774) 0.332 (0.691) 0.238 (0.567)
2.00 0.730 (0.984) 0.746 (0.985) 0.692 (0.978) 0.731 (0.985) 0.709 (0.977) 0.628 (0.948) 0.507 (0.931)
3.00 0.989 (1.000) 0.990 (1.000) 0.986 (1.000) 0.990 (1.000) 0.987 (1.000) 0.967 (1.000) 0.953 (1.000)

Exponential, m=50 (m=100)

δ(1/λ0 = 1) AdjGLR RAdjGLR RS P MW CvM KS ELR

0.25 0.008 (0.011) 0.009 (0.012) 0.008 (0.009) 0.008 (0.011) 0.008 (0.009) 0.008 (0.010) 0.019 (0.027)
0.50 0.011 (0.017) 0.017 (0.029) 0.013 (0.018) 0.014 (0.026) 0.014 (0.022) 0.015 (0.023) 0.048 (0.065)
1.00 0.022 (0.037) 0.043 (0.095) 0.029 (0.051) 0.038 (0.089) 0.037 (0.075) 0.036 (0.072) 0.071 (0.126)
1.50 0.034 (0.062) 0.079 (0.195) 0.047 (0.095) 0.070 (0.185) 0.069 (0.161) 0.064 (0.146) 0.150 (0.266)
2.00 0.045 (0.089) 0.121 (0.307) 0.066 (0.145) 0.109 (0.297) 0.106 (0.264) 0.097 (0.233) 0.219 (0.400)
3.00 0.065 (0.143) 0.208 (0.514) 0.101 (0.240) 0.193 (0.505) 0.188 (0.465) 0.167 (0.410) 0.345 (0.662)

Student, m=50 (m=100)

δ(µ0 = 0) AdjGLR RAdjGLR RS P MW CvM KS ELR

0.25 0.007 (0.011) 0.009 (0.013) 0.006 (0.007) 0.008 (0.011) 0.008 (0.010) 0.009 (0.012) 0.005 (0.009)
0.50 0.010 (0.015) 0.020 (0.038) 0.011 (0.013) 0.018 (0.035) 0.019 (0.032) 0.020 (0.035) 0.014 (0.026)
1.00 0.031 (0.051) 0.086 (0.212) 0.037 (0.062) 0.077 (0.204) 0.082 (0.197) 0.083 (0.195) 0.062 (0.140)
1.50 0.092 (0.165) 0.242 (0.563) 0.110 (0.215) 0.224 (0.555) 0.238 (0.552) 0.232 (0.534) 0.224 (0.437)
2.00 0.213 (0.361) 0.475 (0.861) 0.250 (0.468) 0.455 (0.860) 0.476 (0.861) 0.459 (0.842) 0.414 (0.724)
3.00 0.549 (0.706) 0.863 (0.997) 0.619 (0.856) 0.853 (0.997) 0.872 (0.998) 0.856 (0.997) 0.783 (0.958)
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Table 1 shows that for any given control chart the signal probability is
higher as the shift size δ increases and if the sample size is larger. The
AdjGLR is generally dominated by the RAdjGLR test statistic-based chart
which generally detects the shift with a high probability in almost all con-
sidered cases. However, Parpoula [5] pointed out that its attained IC signal
probabilities are generally larger than the nominal FAP, and therefore may
not be preferred in practice. The MW, ELR and CvM test statistic-based
charts are the best performing charts under a normal, exponential and Stu-
dent distribution, respectively. The RS P and KS-test statistic based charts
also provide reasonably good detecting power under the various distributions
considered.

4 Concluding remarks

In this paper, we examined the performance of competing Phase I nonpara-
metric control charting techniques (based on a change-point model formu-
lation) for monitoring the process mean with individual observations. If the
prevalent concern in Phase I analysis is that the process may incur a grad-
ual mean shift, the derived results indicate that the MW, ELR and CvM
test statistic-based charts are effective nonparametric Phase I control charts,
with a satisfactory and robust performance under normal and nonnormal
processes. It would also be worthwhile to study the effectiveness of these
change-point model-based approaches for monitoring the process variability.
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