
Page 1 of 5 

Angela Montanari 

Variable screening in high dimensional regression via random projection ensembles 

Angela Montanari1*; Laura Anderlucci1; Matteo Farnè1; Giuliano Galimberti1 

1 University of Bologna, Dept. of Statistical Sciences, via Belle Arti 41, Bologna, Italy – 
angela.montanari@unibo.it; laura.anderlucci@unibo.it; matteo.farne@unibo.it; 
giuliano.galimberti@unibo.it  

Abstract: 
In this paper we propose a variable selection method for multiple linear regression which is 
based on ensembles of axis-aligned random projections and accounts for partial correlation 
between each predictor and the response. Performances of the proposed method are 
evaluated on simulated and real data. 
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1. Introduction:
It is well known that, when dealing with high dimensional data, most of the classical
multivariate methods cannot be applied or give unreliable results and it is known as well that
when the number of observed variables p is large the relevant information may be contained
in an s-dimensional subset of the observed variables.

In the context of multiple linear regression this means that the vector of regression coefficients 
for the model involving all the p variables is sparse. The ordinary approach for variable 
selection based on stepwise methods has turned out to produce very unstable results and 
new alternative solutions have recently appeared in the literature.  The problem, for instance, 
has been addressed by either directly applying L1 norm regularization to the original data 
(Tibshirani,1996) or by screening the variables to identify the most relevant ones and then 
applying an L1 penalty to the selected subset (Fan, J. & Lv, J.,2008). The reasons for this two-
step approach lie in the high computational load inherent in the penalized approach. 

In this paper we propose a new method for variable selection in multiple linear regression 
which is based on random projections of the covariates. The use of random projections to 
reduce the dimensionality of a data set is becoming increasingly popular in the multivariate 
statistical literature. The common trait of the most effective solutions consists in randomly 
combining the p columns of the data matrix X, thus mapping the data onto a random d-
dimensional (with d≪p) subspace on which classical analyses can be performed. The results 
obtained on different random projections are then summarized by ensemble methods in order 
to obtain the final estimates. Successful applications include supervised classification 
(Cannings, T.I. & Samworth, R.J., 2017), large covariance estimation (Marzetta et al., 2011), 
large-scale regression (Thanei et al., 2017) and sparse principal components (Gataric et al., 
2020). 
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2. Methodology - Predictor selection via Random Projections:  
In our proposal we exploit the special feature of axis-aligned random projections, which 
represent a fast and analytically tractable way to perform random variable selection. 
Given a data matrix X we consider XA where A is a p × d axis aligned random matrix.  
The least squares problem is than rephrased in terms of XA as 

𝒃𝑨 = 𝑎𝑟𝑔 min
𝒃

‖𝒚 − 𝑿𝑨𝒃‖  

Where the vector y includes the observed values on the response variable. 
Many different A matrices are considered. In particular we consider B1 sets composed by B2 
random projections each and within each block of B2 projections we chose the one for which 
the fitted regression model shows the largest R2. 
As the matrix A is axis aligned, only a few variables will contribute to 𝒃𝑨 in each selected 
projection but, combining the models fitted in all the B1 top projections, we can obtain a ranking 
of the p variables; after cutting the ranking at the assumed sparsity level s we identify the most 
relevant predictors for y. The pseudo code is displayed in Figure 1. Theoretical aspects related 
to the properties of the proposed method are also analysed. 
 
 
3. Results:  
To study and to evaluate the performance of the proposed method, we partially reproduce the 
numerical study of  Fan, J. & Lv, J. (2008). In particular, Fan and Lv consider two main 
scenarios to validate their Sure Independence Screening (SIS) method: independent and 
correlated features. In addition, the prediction accuracy of our method is computed on a real 
dataset. 
 
Simulation I: independent features. The first scenario considers a linear model with IID 

standard Gaussian predictors and Gaussian noise with standard deviation =1.5. Two settings 
with (n, p)=(200,1000) and (n, p)=(500,2000) are considered. The number s of relevant 
predictors is 8 and 18, and the corresponding non-zero coefficients are randomly chosen  as 
follows. 
Let us set a = 4 log(n)/n1/2 and 5 log(n)/n1/2, respectively; the non-zero coefficients are of the 
form (-1)u a|z| for each model, where u is drawn from a Bernoulli distribution with parameter 
0.4 and z is drawn from the standard Gaussian distribution. In particular, the L2-norms of β in 
the two simulated models are 6.695 and 9.582. For each model 100 data sets are simulated; 
the size of the projected space d is set to 10 and 500 blocks of 50 axis-aligned projections 
each are considered. 
In order to facilitate the comparison with the results of Fan and Lv, Figure 2 reports the 
distribution of the minimum number of variables to be selected in order to include the true 
model. More than the 70% of the datasets ranked the relevant variables as first. Such results 
clearly outperform those of SIS reported in Figure 5 (a), page 862 of Fan, J. & Lv, J. (2008). 
 
Simulation II: dependent features. The scenario with dependent features considers three 
settings with (n, p, s) equal to (200,1000,5), (200,1000,8) and (800,2000,14), s denoting the 
number of non-zero coefficients. 

The three p-vectors β are generated in the same way as in simulation I. Let's set (,a) = (1,  2 
log(n)/n1/2), (1.5, 4 log(n)/n1/2), (2, 4 log(n)/n1/2). 
In particular, the L2-norms of β in the three simulated models are 3.618, 6.696 and 6.788. 
To introduce correlation between predictors, an s × s symmetric positive definite matrix C was 
generated with condition number about n1/2/log(n); samples of s predictors X1, …, Xs are then 
generated from 𝑁(0,C). The remaining predictors are taken as  Xi = Zi + (1 - r) X1, I = 2s +1, 

…, p, with r =1 - 4 log(n)/p, 1 - 5 log(n)/p and 1 - 5 log(n)/p, being Zs+1,…,Zp  N(0,Ip-s). 
For each model 100 data sets are simulated; the size of the projected space d is set to 10, 
B1=500, B2=50. 
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Figure 3 includes the distribution of the minimum number of selected variables that is required 
to include the true model: compared with the independent case, the algorithm requires a larger 
model size; however, such number is still very limited, particularly if compared with that of SIS 
(see Figure 6 (a)-(b), page 863 of Fan, J. & Lv, J. (2008)). 
 

 
Figure 1. Pseudo-code of the proposed algorithm for variable screening.  

 
 
 

 
Figure 2. Scenario 1: Distribution of the minimum number of selected variables that is required 
to include the true model when (a) n=200 and p=1000 and (b) n=800 and p=2000. 
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Figure 3. Scenario 2: Distribution of the minimum number of selected variables that is required 
to include the true model when (a)-(b) n=200 and p=1000 and (c) n=800 and p=2000. 
 
 
Real data: Twitter social media buzz. The dataset (from UCI Machine Learning Repository) 
includes 8000 observations; the goal is to predict the popularity of topics on Twitter as 
quantified by its mean number of active discussions given 1378 predictor variables (e.g. 
number of authors contributing to the topic over time, average discussion lengths, number of 
interactions between authors etc). The aim is find a subset of predictors that is relevant for the 
prediction of the response. 
The variable screening of the Twitter dataset was carried out by both sparse linear regression 
via random projections ensembles and Sure Independence Screening, in 4-fold Cross-
Validation. The former run with B1 = 1000, B2 = 50 and d = 20. 
At the end of the procedure, the first 150 predictors were retained for both methods and the 
mean square errors (MSE) computed. The top 150 predictors of both methods have then been 
further filtered out by the Lasso. The results are reported in Table 1. 
 
 
Table 1. Real data example. Prediction accuracy of the regression models that retain the first 

150 predictors (MSE150) and after employing the lasso (MSE – Lasso). Last column reports 

the cross-validation size of each model (Avg size (sd) – Lasso). 

 MSE150 MSE - Lasso Avg size (sd) - Lasso 

lm-RPE 27409.19 31824.75 70 (36.31) 

SIS 42232.19 31860.85 78.75 (21.82) 

 
 

4. Discussion and Conclusion: 
This paper presents a novel approach to sparse linear regression via Random Projections that 
accounts for partial correlation between predictors; as the simulation studies and the analisys 
of real data highlight, the proposed method improves upon SIS which only considers marginal 
correlations. The optimal choice of the tuning parameters, B1, B2, d, and the estimation of s 
are object of ongoing research. 
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