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Abstract

The practical interest of using ensemble methods has been highlighted in several works. Aggrega-
tion estimation as well as sequential prediction provide natural frameworks for studying ensemble
methods and for adapting such strategies to time series data. Sequential prediction focuses on how
to combine by weighting a given set of individual experts while aggregation is mainly interested in
how to generate individual experts to improve prediction performance.
We look for enhancing these (possibly online) mixture methods by using the concept of diversity. We
propose an algorithm to enrich the set of original individual predictors using a gradient boosting-
based method by incorporating a diversity term to guide the gradient boosting iterations. The idea
is to progressively generate experts by boosting diversity.
We establish a convergence result ensuring that the associated optimization strategy converges to
a global optimum. Then, we show by means of numerical experiments the appropriateness of our
procedure using simulated data and real-world electricity demand datasets.
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1 Introduction

The practical interest of using ensemble methods has been highlighted in several works (see [12]).
These studies focus on the rules of aggregation of a set of experts and examine how to weight and
combine the experts. Ensemble methods are now used in very different domains (see [11]).
Boosting techniques are iterative methods that consist in improving the performance of several
hypothesis or base predictors of the same nature, combining them and re-weighting at each step the
original data sample. Freund and Schapire in [6] described the first boosting algorithm, Adaboost,
designed for binary classification problems and with classification trees as hypothesis. Various types
of extensions for boosting exist, in particular for multi-class classification and for regression and
they use different approaches [14].
We use the concept of diversity [4, 13] to propose in the regression context, an algorithm to enrich
the set of original individual predictors. This formulation is inspired from the Negative Correlation
Learning for neural networks [9]. We modify the usual L2 cost function with the aim to find a good
predictor that will be at the same time “diverse” than the mean of the predictors founded at the
precedent steps, according to the diversity formula.
We establish a convergence result ensuring that the associated optimization strategy converges to
a global optimum. Then, we show by means of numerical experiments the appropriateness of our
procedure using simulated data and real-world electricity demand datasets.

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000614



2 Diversity decomposition of a set of experts

The decomposition below is true for any convex aggregation rules but we will take here uniform
weights (since it is the usual output of boosting algorithm iterations). Consider a prediction ŷi
which is the simplest convex aggregation of a set of M individual experts ŷi,m: ŷi = 1

M

∑M
m=1 ŷi,m.

This special kind of mixture gives particularly nice expressions when one decomposes the instanta-
neous square error (yi − ŷi)2, as proposed in [4], with the diversity formula:

(yi − ŷi)2 =
1

M

M∑
m=1

(ŷi,m − yi)2

︸ ︷︷ ︸
weighted average error of the individuals

− 1

M

M∑
m=1

(ŷi,m − ŷi)2

︸ ︷︷ ︸
diversity term

(1)

The significance of the Ambiguity decomposition it that the error of the ensemble will be less than or
equal to the average error of the individuals, and then the ensemble has lower error than the average
individual error: larger will be the diversity term, larger will be the ensemble error reduction.

3 Diversity-based cost function

In the context of machine learning methods, boosting are sequential algorithms that estimate a
function F : R → R by minimizing the expectation of a functional C(F ) = E [Ψ(Y, F (X)] where
Ψ : R× R→ [0,+∞) measures the cost for predicting F (X) instead of Y , using a training sample
{(yi, xi)}ni=1 and functional gradient descent techniques. More precisely, considering a family F =
{f : Rd → R}, the method consists to estimate F by minimisation of the empirical expectation loss

Cn(F ) =
1

n

n∑
i=1

Ψ(yi, F (xi)), (2)

by looking for an additive function of the form FM =
M∑
m=1

αmfm where αm ∈ R and fm ∈ F for all

m (see [8], [10] and [5]). The general Gradient Boosting algorithm is recalled in Figure 1.
In the spirit of L2-Boost algorithm, we propose an algorithm which encourage diversity of interme-
diate predictors. Following equation (1), we propose the cost function

Ψ(yi, F ) =
1

2
(yi − F )2 − κ

2
(F − c)2

where κ is the term which modulate the importance given to the diversity of the predictor to the
average of the previous ones and therefore c can be thought as a constant. The Boosting Diversity
algorithm (Bodi) is detailed in Figure 2.
With BoDi algorithm, as in the classical boosting, we obtain a final ensemble forecast F ∗M,κ as well
as a set of experts Fk,κ. We make the dependency to κ explicit whereas other parameters (like the
gradient step, the size of the bootstrap sample) play a role.

4 A convergence result

An elegant and recent result from [1] can be used to prove the convergence of several gradient
boosting-based methods in a very general framework. The convergence result holds for C(F ), the
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Let L =
{

(y1,x1), . . . , (yn,xn)
}

be a sample and F a family of functions.

1. Fit an initial learner f̂0 = F̂0 ∈ F such that F̂0 = Argmin
f∈F

n∑
i=1

(
yi − f(xi)

)2
2. For m ∈ {1, . . . ,M}:

(a) Compute the negative gradient ui = − ∂Ψ(yi,F )
∂F

∣∣∣
F=F̂m−1(xi)

∀ i = 1, . . . , n and

f̂m = Argmin
f∈F

n∑
i=1

(
ui − f(xi)

)2
(b) Choose the best step size: ŵm = Argmin

w

n∑
i=1

Ψ
(
yi, F̂m−1(xi) + wf̂m(xi)

)
(c) Update the aggregated predictor: F̂m(x) = F̂m−1(x) + ŵmf̂m(x)

Outputs: a family of experts f̂0, f̂1, f̂2, . . . , f̂M and the aggregated predictor F̂M .

Figure 1: General Gradient Boosting algorithm.

Let L =
{

(y1,x1), . . . , (yn,xn)
}

be a sample, F a family of functions, κ > 0 and δ > 0. Randomly
split the data in two disjoint parts I = I1 ∪ I2.

1. Fit an initial learner f̂0 = F̂0 ∈ F over I1 such that F̂0 = Argmin
f∈F

∑
i∈I1

(
yi − f(xi)

)2
.

Set F̂ ∗0 (x) = F̂0(x).

2. For m ∈ {1, . . . ,M}:

(a) ∀ i ∈ I2, compute the negative diversity gradient of the cost evaluated at F̂m−1(xi):

ui =
(
yi − F̂m−1(xi)

)
+ κm

(
F̂m−1(xi)− F̂ ∗m−1(xi)

)
with κm = κ

(
1− 1

m

)
if m > 1, κ1 = κ and f̂m = Argmin

f∈F

∑
i∈I2

(
ui − f(xi)

)2
.

(b) Update boosting predictor as F̂m(x) = F̂m−1(x) + δf̂m(x).

Compute F̂ ∗m(x) = 1
m

m∑
i=1

F̂i(x) and update I2 = I \ I1 with a new subsample I1 of I.

Outputs: a family of experts f̂0, f̂1, f̂2, . . . , f̂M and the aggregated predictors F̂M and F̂ ∗M .

Figure 2: Boosting Diversity algorithm.

expectation of our convex cost function Ψ(y, F ) = 1
2(y−F )2− κ

2 (F − c)2 because C and Ψ satisfies
the three assumptions needed to ensure convergence established. It warranties that the optimisation
strategy converges to a global optimum. It should be noted that this result is not a statistical one.
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5 Numerical experiments

A simulated example We use here a simulated data set presented in [7] and used in [3] for
bagging. The inputs are 10 independent variables uniformly distributed on the interval [0,1], only
5 out of these 10 are actually used. Outputs y are generated according to the formula:

yi = 10 sin(πx1,ix2,i) + 20(x3 − 0.5)2 + 10x4 + 5x5 + εi

where εi is N(0, σ2). As in [3] we simulated a learning set of size n0 = 200 and a test set of size
n1 = 1000 observations, σ = 1. We replicate the simulation 100 times. The results for a random for-
est base learner including all the 10 covariates with parameters mtry = 3, ntree = 100, data splitting
rate α = 0.5, gradient step δ = 0.08 and diversity weight κ ∈ {0, 0.5, 1, 1.5} are presented in Figure 3.
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Figure 3: MSE for different diversity (κ) values with RF (mtry=3, ntree=100) as base learner.

We see the influence of κ. For κ not too large there is a clear improvement of the diversity boosting
strategy over the original random forest forecaster, reducing the error by 3 after a sufficient number
of iterations (at least 100). For large κ, here 1.5 or more, the algorithm diverges after 100 iterations.
In the range of reasonable values of κ (ensuring convergence of the algorithm), choosing κ too small
entails a larger forecasting error meaning that encouraging diversity can lead to an improvement of
the forecasts. κ = 0 corresponds to classical boosting. We can observe that classical boosting works
well here and improves significantly the forecast of the original forest. This is quite surprising since
the random forest could be seen as a ”strong” learner in the sense that it is not a weak learner as
stumps or small trees or other classical weak learners in boosting.
Three base-learners are considered : stumps, Purely Random Forests (PRF) and Breiman’s Random
Forests (RF). To illustrate the influence of the choice of the base learner, let us examine the MSE
as a function of boosting steps for the 3 base learners (see Figure 4).
The best results are obtained for RF. But the relative improvement over the original base learner is
far more important for PRF, probably because PRF can generate more diversity than RF, inducing
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Figure 4: MSE as a function of boosting steps for the 3 base learners: Stumps, PRF and RF.

a large gain with diversity boosting. Another remark is the good convergence of the algorithm and
its robustness regarding the choice of the number of boosting steps.

An electricity consumption dataset Consider French electricity consumption provided by the
system operator RTE (Reseau de Transport d’Electricite), from the 1st of January 2012 to the
15th of March 2020 with a 30 minutes sampling period. We add a covariate: thenational averaged
temperature from the French weather forecaster Meteo-France. We train the models on historical
data from January 2012 to the end of August 2019 and test on the last year. Finally, to avoid
outliers we drop the holidays periods and bank holidays.
Examine first, the performance by considering RF as base learner in Figure 5.
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Figure 5: RMSE on test set as a function of boosting steps for κ = 0.5 (left) κ = 0.9 (right) gradient
steps (δ = 0.08) with RF (ntree=100, mtry=3) as base learner.

The best RMSE are obtained for Fκ, followed by F ∗κ . Choosing κ close to 1 leads to improve
forecasting performance as the learner can generate more diversity.
To end, examine the performance by considering PRF as base learner in Figure 6. Interestingly,
the best RMSE is achieved by Fκ=0.9 with PRF which is a good base learner for diversity boosting.
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