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Abstract 

Our daily life is regulated by two types of events: deterministic and uncertain. 

Uncertain situations are random and may result in different possible consequences when 

replicated. On the other hand, an uncertain scenario leaves us with different alternatives to 

choose from. Therefore, it requires proper planning and decision-making to choose the best 

alternative to live life securely and comfortably. Quantification of the uncertainty can make it 

easier to make the optimum decision. Probability theory has been the oldest concept to 

quantify uncertainty in real life; there are two approaches to quantify the uncertainty of an 

event- frequentist and Bayesian. The Bayesian approach is more suitable for real-life 

scenarios. For example, should I carry an umbrella during a trip if it rains in the coming 

days? What is the chance that a particular volcano shall erupt soon? Such real-life events 

cannot be replicated as laboratory experiments. 

Moreover, the non-Bayesian approach may not explain them. Nevertheless, the 

uncertainty around these events may be quantified based on subjective or experts’ opinions. 

We often update our beliefs or judgment in light of the available facts and act accordingly in 

our daily life. For example, suppose that a person is down with a fever. A doctor speculates 

it as viral fever. This expert’s prior judgment is revised based on the appropriate medical 

diagnoses, and the medication is prescribed. Thus, prior knowledge is required in some life 

scenarios to make better decisions.  

Theoretically, the uncertainty of an event is formulated in unknown model parameters 

to be estimated. In Bayesian statistics, the model parameters are assigned with probabilistic 

statements conditioned on the available observations. There are two types of uncertainty 

quantification in model parameters prior and posterior to observing data: prior density and 

posterior density. As a combination of prior and present knowledge formulation of a 

parameter, posterior density leads to further summarized uncertainty measurements in 

parameters essayed by Bayesian point estimates and credible or highest posterior density 

regions.  

Uncertainty in a future event is predicted through predictive posterior densities given 

presently available observations and summing over the posterior uncertainty in parameters 

and summarized with credible regions or point estimates. 

This article shall explain the key concepts and applications of Bayesian statistics to 

deal with uncertainty with a suitable example and R-codes. 
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Introduction 

Our daily life is regulated by two types of events: deterministic and uncertain. 

Uncertain situations are random and may result in different possible consequences when 

replicated. On the other hand, an uncertain scenario leaves us with different alternatives to 

choose from. Therefore, it requires proper planning and decision-making to choose the best 

alternative to live life securely and comfortably.  

Quantification of the uncertainty can make it easier to make the optimum decision. 

Probability theory has been the oldest concept to quantify uncertainty in real life. Let us 

consider a few examples to understand probability. If a student undergoes a test for 

Statistics subject, what is the chance of her passing the test? A lot consists of 10 useful 

articles, 4 with minor defects, and 2 with major defects. One article is chosen at random. 

What is the chance that it has no defects? Answers to all these problems of uncertainty can 

be found with the concept of probability.   

Furthermore, there are two approaches to quantify the uncertainty of an event- 

frequentist and Bayesian. The Bayesian approach is more suitable for real-life scenarios. For 

example, should I carry an umbrella during a trip if it rains in the coming days? What is the 

chance that a particular volcano shall erupt soon? Such real-life events cannot be replicated 

as laboratory experiments. Moreover, the non-Bayesian approach may not explain them. 

Nevertheless, the uncertainty around these events may be quantified based on subjective or 

experts’ opinions.  

We often update our beliefs or judgment in light of facts available and act accordingly 

in our daily. For example, suppose that a person is down with fever and headache. A 

medical practitioner speculates it as viral fever. This expert’s prior judgment is revised based 

on the appropriate medical diagnoses, and the medication is prescribed. Thus, prior 

knowledge is required in some life scenarios to make better decisions. On the other hand, 

suppose some prior knowledge, personal judgments, or experts’ opinions are available 

about the events that could affect our decision in life. In that case, the inferences concerning 

uncertainty may be attributed to the theory of Bayesian statistics.  

Theoretically, the uncertainty of an event is formulated in unknown model parameters 

to be estimated. In Bayesian statistics, the model parameters are considered random and 

quantified with probabilistic statements conditioned on the available observations. Thus, 

there are two types of uncertainty quantification in model parameters prior and posterior to 

observing data: prior density and posterior density. As a combination of prior and present 

knowledge formulation of a parameter, posterior density leads to further summarized 

uncertainty measurements in parameters essayed by Bayesian point estimates and credible 

or highest posterior density regions. Uncertainty in a future event is predicted through 

predictive posterior densities given presently available observations and summing over the 

posterior uncertainty in parameters and summarized with credible regions or point estimates. 

In Bayesian statistics, the uncertainty statements are straightforward and may 

consider both subjective and objective probability approaches. The prior knowledge based 
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on belief or judgment is called subjective. In contrast, the objective notion provides 

probability measurements based on the model formulation of available facts.  

Bayesian statistics has found increasing popularity in applied sciences and social 

science to deal with uncertain real-life scenarios. Therefore, this article aims to present the 

fundamental concepts of Bayesian estimation of uncertainty with a suitable example.   

 

Methodology 

Let us consider a simple example of electoral polls. Suppose candidate A has got 54 

votes, and B received 46 votes in a 100 people poll. Then, what are the chances of A 

winning the election? Further, what is the probability that a new voter in poll shall vote for 

candidate B?  

Let   denote the number of votes received by A. Then the uncertainty in behaviour of 

voters can be modelled as a Bernoulli variate y with   probability of wining of A; y=1: vote to 

A, y=0: vote to B.  Then   as the sum of values of   shall follow a binomial density with 

parameters as total number of voters   and probability of wining of A,     

In general, let a r.v.   follows the distribution  ( | )     . Then, considering     as 

a random quantity, the conditional probability density of   given   may be computed by the 

Bayes’ theorem as,  ( | )  
 ( | ) ( )

 ( )
  The term  ( ) stands for the prior uncertainty 

measurement (density) of   over   reflecting the knowledge around   gathered before 

observing data  . Further, the term   ( | ) refers to the posterior uncertainty measurement 

(density) of   given data   comprising of the updated knowledge of   in light of data. 

Nevertheless,  ( ) is called marginal likelihood as a function of data   only. It can be 

computed by integrating/summing the joint density,  (   )    ( | ) ( )  over the 

uncertainty of  ; however, its computation may be analytically amenable, which may lead to 

further approximations to the posterior densities.  

 

Why is   random?  

As a critical concept in Bayesian statistics, the parameter   is considered random. 

The subjective notion of probability underlies the Bayesian framework. Under alternative 

hypotheses, an unknown (parameter) may have distinct values, accounting for its 

uncertainty. This uncertainty can be measured using expert assessment, personal belief, or 

previous research on the unknown. The question of assigning a prior density to an unknown 

parameter has long been a source of contention among Bayesian statisticians. As a result, 

prior elicitation emerges as a branch of Bayesian statistics research. 

 

Choosing a prior:  

The initial step in calculating posterior uncertainty is to choose an appropriate prior 

by assessing knowledge, no-knowledge, or little knowledge about    before obtaining data. A 

prior density plays a vital role in posterior inference about   in the situation of weak or 

insufficient evidence. Prior density, on the other hand, only has a significant effect on a 

posteriori inference given sufficient and strong datasets. As a result, choosing a prior density 

for a meaningful inference about   should be done with caution. 

Prior elicitation is the process of quantifying a prior density around θ depending on 

the experts' knowledge or judgement. The subjective approach of selecting a prior allows 

experts' opinions to be translated into probabilistic statements. According to Berger [1985], 

the subjective approach can be divided into different categories based on the subjective 

knowledge accessible regarding     - relative likelihood approach, histogram approach, 
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matching of a given functional form, and CDF determination. To fit no or little prior 

information about   objective priors are also known as vague, non-informative, and weak 

priors. Laplace's prior, Jeffreys priors, reference prior, and locally uniform prior are the most 

commonly utilised priors in this category. Conjugate priors can be classified either 

informative or non-informative. The conjugate priors are the most useful as they enable 

posterior densities easy to compute, at least for lower dimensional situations. Berger [1985], 

Lee [2012], Gelman et al.[2006], and Gosh et al.[2006] may be explored for more information 

on choosing a prior. 

 

Bayesian interval estimation:  

Rather than simply placing their uncertainty measures, it is often more convenient to 

deal with the most likely values of the unknowns (probabilities). Given a sample of data on 

the IQ of students of various ages, there is a 95% chance that the average IQ will fall 

between the range of 100-120. A summary estimate of the uncertainty in an unknown is 

provided by an interval estimate. The interval estimate of θ is relatively simple in the 

Bayesian technique. Credible intervals mainly need to find subsets with a certain posterior 

probability. A    (   )  credible interval (   )    is defined such that, ∫  ( | )
 

 
   

(   )       is continuous. For discrete    integration sign is replaced by summation. There 

can be numerous choices of 100 (   )  credible intervals (   )    following its 

properties. The idea is to select the shortest interval with the most likely values of   as its 

members. The shortest possible credible intervals (or regions) comprising the most probable 

values of θ are termed as highest posterior density intervals, or HPD intervals (or regions). 

HPD intervals are equivalent to equal tail credible intervals when  ( | ) is symmetric and 

unimodal. 

 

Predictive posterior density:  

Quantifying uncertainty in future events is often desirable for decision making for 

government administration, public sectors, private sectors, industrialists, and even for 

individuals for maximum gain or minimum loss. For example, prediction for the 

unemployment rate next year would help the government open a number of new jobs.  

Prediction of a future observation is also subjected to uncertainty measurement in Bayesian 

inference. The posterior uncertainty measurement in a future or a new observation 

     given the current observations   is termed as a predictive posterior density. It is found 

as,  (    | )   ∫  (    |   ) ( | ) 
 =∫  (    | ) ( | ) 

  . As per the assumption of 

independently and identically distributed observations given   we may set   (    |   )  

  (    | ) to compute   (    | ); however, the posterior density  ( | ) must be found in 

advance.  

Similarly to unknown parameters, uncertainty in future observations can be 

summarised with credible intervals or HPD intervals. 

 

Application and Results 

Let us consider the abovementioned example of electoral polls to show the effect of 

prior choices and different sample sizes on posterior probabilities.  

There can be three steps to find the posterior probabilities-1. Set a prior density. 2. 

Define the likelihood. 3. Compute the posterior density. Step 1. Prior density: (a) For a no 

prior information on winning chances of candidates,  , let us assign a uniform prior, i.e. 
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   (   ). (b) Assign prior density as     (           ) for candidate A having more 

chances of winning, i.e., for   > 0.5 a priori. (c) Consider     (           ) as the prior 

density for B as more preferential candidate, i.e.,   < 0.5. Step 2: Likelihood: Let   denote 

the number of votes to candidate A, then  (    | )            
  (   )           is 

the likelihood of  . The term (   ) is the probability of winning of candidate B. Step 3: 

Posterior density: By the Bayes’ law, the posterior density of    is computed as, 

 ( |    )  
 ( |    ) ( )

∫  ( |    ) ( )  
 

   Analytical solution to the computation of the posterior 

density if found under different prior densities, as 

                               (a)  ( |    )   
   (   )  

∫    (   )    
 

     (       )    

                               (b)  ( |    )   
   (   )    (   )    

∫    (   )    (   )     
 

     (         )   

 

                               (c)  ( |    )   
   (   )      (   )  

∫    (   )      (   )   
 

     (         )  

 

An equivalent R-code to compute the above posterior densities with numerical 

integration method (discretization of integration), without solving it manually is as follows. 

 

n= 100; r = 54; step = 0.01; theta = seq (0,1, by=step) 

# prior density under (a), (b) and (c) cases 

ptheta_a = dunif (theta, 0, 1); ptheta_b = dbeta(theta, 4, 2.5); ptheta_c= dbeta(theta, 2.5,4) 

###  likelihood 

likeli = thetaˆr * (1−theta )ˆ(n−r) 

# posterior density  

joint_a= likeli *ptheta_a; ml = sum(joint_a *step); post_a = joint1/ml 

 

Shown in the left side of Figure 1, we can compare these results using the posterior 

probability plots as obtained with the R-codes and. We can see from the figure that the 

posterior densities are almost overlapped by each other. That is, the effect of different prior 

densities on the resultant posterior is near negligible. It happens in the case of a strong 

likelihood, with a large data set. The R-syntax to produce the graph is as follows. 

 

matplot (theta, cbind( post_a, post_b, post_c ), type= ” l ” , ylab = “Posterior density ” ) 

legend (“topright” , legend = c (“posterior 1” , “posterior 2” , “posterior 3” ), col = 1:3, lty = 1:3) 

 

Let us consider a total of 10 total voters only, 7 to A and 3 to B. Right hand side of Figure 1 

reflects that the choices of different priors have a strong impact on the resulting posterior 

densities given small sample sizes; i.e. the nature of the posterior density is sensitive to prior 

density choices. Therefore, for small sample sizes or weak data, it is advisable to use 

informative prior density as a strong prior information where possible.  

Now, candidate A shall win if      . Therefore, posterior probability of him wining is 

equal to P[     |          ] = 1- P[     |          ]. With r-code, 1-pbeta(0.5, 

57.5,51) = 0.7345439 
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Figure 1: Comparison of posterior densities for different choices of priors with total number of 

voters and number of votes to candidate A, left–100 and 54, right–10 and 7, respectively. 

 

For further results on application of Bayesian estimation, let us consider posterior 

density with prior density with option (c) and data as n=100, r=54. The posterior mode of the 

density is found 0.53 with the following R-code.  

 

### finding posterior mode  

findmode <- function(post, theta) { index <- which.max(post); mode<-theta[index]; print(mode) 

} 

 

Thus, candidate A is most likely to win given the poll results.  

The 95% HPD interval in which the value of winning chance of candidate is 95% 

times likely to lie is found as [0.44, 0.62] with the following R-codes.  

 

###  95% HPD interval  

credMass = 0.95;  sortedPost = sort(post3 , decreasing=T)  

HDIheightIdx = min(which(cumsum(sortedPost*step)>=credMass))  

HDIheight = sortedPost[HDIheightIdx] # posterior probabilities at index 

indices = which(post3>= HDIheight); HPD_Lni = min(theta[indices])  

HPD_Uni = max(theta[indices]); show(data.frame(HPD_Lni, HPD_Uni)) 

 

We also found equal-tail 95% credible interval with the following R-codes as 

[0.4361343, 0.6227271].   

 

###Equal-tail 95% credible interval  

q_L = qbeta(0.025, 57.5, 51); q_U = qbeta(0.975, 57.5, 51); print(data.frame(q_L,q_U)) 

 

We can see that the 95% HPD interval and the 95% credible interval are the same, which is 

the case for symmetric posterior densities. 

We also found the predictive posterior probability of a voter choosing for candidate A 

and B, with the following R-code, as 0.5305164 and 0.4694836, respectively. Thus, there are 

more chances of candidate A to be voted by a new voter.   
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###predictive posterior density  

density_A = dbinom(1,1,theta); density_B = 1-density_A;  

predictive_A = sum(density_A*post3*step); predictive_B = 1-predictive_A; 

print(data.frame(predictive_A,predictive_B)) 

 

When applied to problems with multidimensional unknown parameters, Bayesian 

computation (evaluation of posterior densities, posterior estimates, posterior predictive 

distribution) can become analytically intractable. In solving Bayesian computation problems, 

simulation-based methods, such as MCMC techniques, and functional approximations such 

as Gaussian approximation, Laplace approximation, INLA, and variational Bayes 

approximations are widely used. However, the article does not include descriptions of these 

techniques. 

 

Conclusion 

Non-Bayesians frequently strive with the Bayesian concepts of uncertainty. The 

credible sources on these concepts either provide extensive theory or are primarily applied 

in nature. This article combines simple theoretical and applied approaches to understanding 

uncertainty using basic Bayesian concepts and R-codes. We hope that the article shall prove 

to be a productive yet straightforward platform for readers to deal with uncertainty in real-life 

scenarios with the notions of Bayesian statistics.  
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