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Abstract

In this paper, a Bayesian adaptive estimation of bandwidth vector is provided for the multivariate modified
gamma kernels. This kernel with standard bias reduction is appropriated to estimate nonnegative orthant
densities with support [0,∞)d. For this purpose, we treat the bandwidth vector as a random vector using
the inverse gamma prior. Exact expression of the posterior distribution and the vector of bandwidths are
obtained through the usual quadratic loss function. Simulation studies and applications highlight similar
performances between the proposed approach and the standard gamma case without bias reduction, and
under integrated squared errors.
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1. Introduction
Asymmetric kernels are known to improve smoothing quality for partially or totally bounded supports;
e.g. Scaillet (2004) with inverse and reciprocal inverse Gaussian kernels. However, these kernels induces
an additional quantity in the bias that needs reduction via modified versions; see for example Chen (1999,
2000), Hirukawa and Sakudo (2014, 2015), Igarashi and Kakizawa (2014, 2015), Malec and Schienle (2015).
In the multivariate setting, let X1, . . . ,Xn be independent and identically distributed (iid) d-variate random
variables with an unknown probability density function (pdf) f on Td = [0,∞)d, a subset of Rd with d ≥ 1.
Then, the multiple (standard and modified) gamma kernel estimators f̂n and f̃n of f are defined, respectively,
for Xi = (Xi1, . . . ,Xid)>, i = 1, . . . ,n, by

f̂n(x) =
1
n

n∑
i=1

d∏
j=1

Gx j,h j (Xi j) and f̃n(x) =
1
n

n∑
i=1

d∏
j=1

Gρ(x j;h j),h j (Xi j) ∀x ∈ Td = [0,∞)d, (1)

where x = (x1, . . . , xd)> is the target vector and h = (h1, . . . , hd)> is the vector of smoothing parameters with
h j > 0, j = 1, . . . , d; see, e.g. Bouerzmarni and Rombouts (2010). Both functions Gx,h(·) and Gρ(x;h),h(·) are,
respectively, the standard and modified gamma kernels given on the support Sx,h = [0,∞) = T1 with x ≥ 0
and h > 0:

Gx,h(u) =
ux/h

Γ (1 + x/h) h1+x/h
exp

(
−

u
h

)
1[0,∞)(u) and Gρ(x;h),h(u) =

uρ(x;h)−1

Γ
(
ρ(x; h)

)
hρ(x;h)

exp
(
−

u
h

)
1[0,∞)(u), (2)

where Γ(v) =
∫
∞

0 sv−1 exp(−s)ds is the classical gamma function with v > 0, 1E denotes the indicator function
of any given event E, and the parameter ρ(x; h) is

ρ(x; h) =

 1 + (x/2h)2 if x ∈ [0, 2h)

x/h if x ∈ [2h,∞).
(3)
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The gamma kernel Gx,h(·) appears to be the pdf of the gamma distribution, denoted by G(1 + x/h, h) with
shape parameter 1 + x/h and scale parameter h.

The estimators (1) were originally introduced in the univariate case by Chen (2000) and then used in multi-
variate case by Bouerzmarni and Rombouts (2010). Notice that the formulation (3) allows to distinguish the
boundary region from the interior one with respect to the bias corrections; see Zhang (2010) and Libengué
Dobélé-Kpoka and Kokonendji (2017) for another choices of the boundary and interior regions and also,
Funke and Kawka (2015) for several nonnegative kernels. A generalized form of (1) is recently introduced
by Kokonendji and Somé (2018).

The performance of the estimators in (1) depends crucially on the diagonal bandwidth matrix h := diag(h1, . . . , hd).
Remark that this matrix with d real parameters is a particular case of the full symmetric one with d(d + 1)
independent parameters. The global bandwidth matrices selections such as cross-validation, plug-in and
recently global Bayesian are known to have lower performances than their variable counterparts namely
adaptive and local. The reader can see for example Ziane et al. (2015), Somé (2021), Somé and Koko-
nendji (2021) and Zougab et al. (2014) for Bayesian adaptive cases using univariate Birnbaum-Saunders
kernel, (univariate and multiple) standard gamma kernel and multivariate Gaussian kernel, respectively.

The purpose of this paper is to propose an explicit selector of adaptive Bayesian bandwidths in multivariate
pdf estimation on [0,∞)d using the product of d univariate modified gamma kernels (2) with parametrization
(3). The inverse gamma is used as prior to obtain the exact formula of the posterior distribution and the
vector of bandwidth. The performances of this Bayesian approach for multiple modified gamma kernels
are finally compared to the one with multiple standard gamma kernels (Somé and Kokonendji, 2021) using
simulated and real data. See also Kokonendji and Somé (2021) for a Bayesian selector of adaptive bandwidth
in a semiparametric topic with these multiple standard gamma kernels.

2. Bayesian adaptive bandwidth selector for multiple modified gamma kernels
Following the multiple standard gamma case of Somé and Kokonendji (2021), the modified gamma kernel es-
timator is constructed from (1) with (2) and (3) by considering a variable bandwidth vector hi = (hi1, . . . , hid)>

for each observation Xi = (Xi1, . . . ,Xid)> in place of the fixed bandwidth vector h = (h1, . . . , hd)>. Thus, we
treat hi as a random vector with a prior distribution π(·).

The estimator (1) with parametrization (3) for multiple modified gamma kernel and variable vector of
bandwidth hi is written in x = (x1, . . . , xd)> ∈ [0,∞)d as

f̂n(x) =
1
n

n∑
i=1

d∏
`=1

Gρ(x` ,hi`),hi` (Xi`). (4)

The leave-one-out kernel estimator of f (Xi) is deduced from (4) as

f̂n,hi,−i(Xi) :=
1

n − 1

n∑
j=1, j,i

d∏
`=1

Gρ(x` ,hi`),hi` (X j`). (5)

Let π(hi) be the prior distribution of hi, then the posterior distribution for each variable bandwidth vector
hi given Xi provided from the Bayesian rule is expressed as follow

π(hi | Xi) =
f̂n,hi,−i(Xi)π(hi)∫

χ
f̂n,hi,−i(Xi)π(hi)dhi

, (6)

where χ is the space of positive vectors. The Bayesian estimator h̃i of hi is obtained through the usual
quadratic loss function as

h̃i = E (hi | Xi) = (E(hi1 | Xi), . . . ,E(hid | Xi))
> . (7)
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We assume that each component hi` = hi`(n), ` = 1, . . . , d, of hi has the univariate inverse gamma prior
IG(α, β`) distribution with same shape parameters α > 0 and, eventually, different scale parameters β` > 0
such that β = (β1, . . . , βd)>. We here recall that the pdf of IG(α, β`) with α, β` > 0 is defined by

IGα,β` (u) =
βα`

Γ(α)
u−α−1 exp(−β`/u)1(0,∞)(u), ` = 1, . . . , d, (8)

where Γ(·) is the usual gamma function. From those considerations, the closed form of the posterior density
and the Bayesian estimator of the vector hi are given in the following proposition.

Proposition 0.1 For fixed i ∈ {1, 2, . . . ,n}, consider each observation Xi = (Xi1, . . . ,Xid)> with its corresponding
vector hi = (hi1, . . . , hid)> of univariate bandwidths and defining the subset Ii = {k ∈ {1, . . . , d}; Xik = [0, 2hik)} and
its complementary set Ici = {` ∈ {1, . . . , d} ; Xi` ∈ [2hik,∞)}. Using the inverse gamma prior IGα,β` of (8) for each
component hi` of hi in the multiple gamma estimator (4) with α > 1/2 and β = (β1, . . . , βd)> ∈ (0,∞)d, then:
(i) there exists λik > 0 for k ∈ Ii such that the posterior density (6) is the following weighted sum of inverse gamma

π(hi | Xi) =
1

Di(α,β)

n∑
j=1, j,i

∏
k∈Ii

Ai jk(α, βk) IGλik+α+1,X jk+βk (hik)


∏
`∈Ici

Bi j`(α, β`) IGα+1/2,Ci j`(β`)(hi`)

 ,
with Ai jk(α, βk) = [Γ(λik+α+1)Xλik

jk ]/[β−αk Γ(λik+1)(X jk+βk)λik+α+1], Bi j`(α, β`) = [X−1
j` Γ(α+1/2)]/(β−α` X−1/2

i`

√
2π[Ci j`(β`)]α+1/2),

Ci j`(β`) = Xi` log(Xi`/X j`) + X j` − Xi` + β`, and Di(α,β) =
∑n

j=1, j,i

(∏
k∈Ii Ai jk(α, βk)

) (∏
`∈Ici

Bi j`(α, β`)
)
;

(ii) under the quadratic loss function, the Bayesian estimator h̃i =
(

h̃i1, . . . , h̃id

)>
of hi, introduced in (7), is

h̃im =
1

Di(α,β)

n∑
j=1, j,i

∏
k∈Ii

Ai jk(α, βk)


∏
`∈Ici

Bi j`(α, β`)


(

X jm + βm

λik + α
1[0,2him)(Xim) +

Ci jm(βm)
α − 1/2

1[2him,∞)(Xim)
)
,

for m = 1, 2, . . . , d, with the previous notations of Bi j`(α, β`), Ai jk(α, βk), Ci jm(βm) et Di(α,β).

One can remark that λik → 0 with k ∈ Ii provides the Bayesian adaptive bandwidth vector for the multiple
gamma kernel of Somé and Kokonendji (2021). Similarly to Somé and Kokonendji (2021) and Kokonendji
and Somé (2021) for nonparametric and semiparametric approaches respectively, we have to consider
α = αn = n2/5 > 2 and β` = 1 > 0, ` = 1, . . . , d in numerical illustrations. These previous choices are not
necessarily the optimal for obtaining the best smoothing quality. Simulations, applications to real datasets
with the R (2021) software, and comparisons to the Bayesian adaptive bandwidth with standard gamma
kernels will point out the efficiency of this modified version.
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