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Abstract: 
The foundations of correspondence analysis rest with Pearson's chi-squared statistic as the 
core measure used to assess the association structure between categorical variables. Not 
only is this statistic extremely popular and versatile, using it for the purposes of performing 
correspondence analysis ensures that the squared distance between two intra-variable points 
are Euclidean. More recently, it was shown how the Freeman-Tukey statistic plays a role in 
correspondence analysis and how such distances can be assessed using the Hellinger 
distance. Both Pearson's and the Freeman-Tukey statistics are special cases of the Cressie-
Read divergence statistic. Therefore, we shall be exploring the features of correspondence 
analysis where the association, and the resulting low-dimensional visual display, have at its 
foundations this divergence statistic. By doing so, we shall describe the properties of 
correspondence analysis when special cases of the divergence statistic (including the log-
likelihood ratio statistic and the Cressie-Read statistic) are considered. The applicability of this 
will be shown by analysing digital data. Such an approach means that a “better” quality two-
dimensional visual display can be found that exceeds that of the “best” possible display 
obtained using the classical approach to correspondence analysis. 
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1. Introduction:

Correspondence analysis (CA) is a popular method used for visualising the association 
between two or more categorical variables. Such a visualisation assesses the nature of the 
association by depicting the position of a categories profile in a low-dimensional space, 
typically consisting of two-dimensions. Traditionally, CA relies on using Pearson’s chi-squared 
statistic for assessing the association between the categorical variables. However, the last 20 
years or so have seen various amendments made to CA that, while not explicitly saying so, 
are very much linked to alternative chi-squared measures. For example, Greenacre (2009) 
proposed his log-ratio analysis which involves the modified log-likelihood ratio statistic as the 
underlying measure of association. While Greenacre (2009) did not examine this link, he did 
study the differences in the configuration of points when considering the logarithm 
transformation of a profile with the un-transformed profile. Cuadras & Cuadras (2006) 
proposed a “parametric correspondence analysis approach” using a Helllinger Distance 
Decomposition (HDD) and, while the authors did not do so, it can be shown that this technique 
uses the Freeman-Tukey statistic. 

To demonstrate the link that CA has to the various chi-squared statistics, Beh & Lombardo 
(2021) demonstrated that the Cressie-Read divergence statistic (Cressie & Read, 1984) can 
be used as the underlying measure of association. Such a statistic provides a family of chi-
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squared statistics which includes as special cases Pearson’s statistic, the Freeman-Tukey 
statistic, the modified log-likelihood ratio statistic amongst others. Therefore, this paper briefly 
outlines how CA can be performed using the divergence statistic and discusses some of the 
features that come from such an analysis. A more comprehensive description of this method 
can be found in Beh and Lombardo (2021).  
 

Our discussion of this approach to CA is made in the following three sections. Section 2 
outlines the method and some of its features (which includes defining the principal coordinates 
and their properties, and some measures of distance) while Section 3 provides a 
demonstration of this method using data from the 2018 European Social Survey (ESS 2018). 
Some final comments are left for Section 4. 
 

2. Methodology:  
 

2.1 The Cressie-Read Statistic 
Suppose we have an I × J contingency table, N, where the (i, j)th cell entry is denoted by nij, 

for i = 1, 2, … , I and j = 1, 2, … , J. Let the grand total of N be n and the (i, j)th relative frequency 

be pij =  nij n⁄  so that ∑ ∑ pij
J
j=1

I
i=1 = 1. Denote the ith row and jth column marginal proportion 

by pi• = ∑ pij
J
j=1  and p•j = ∑ pij

I
i=1  respectively. 

 

Suppose we define the Cressie-Read residual of the (i, j)th cell of N to be  
 

rij(δ) =
1

δ
((

pij

pi•p•j
)

δ

− 1) 

 

for some value of δ. Then, the Cressie-Read divergence statistic, ϕ(δ), can be obtained from 
the weighted sum-of-squares of these residuals so that 
 

ϕ(δ) = n ∑ ∑ pi•p•jrij(δ)

J

j=1

I

i=1

 . 

 

Specific values of δ give us some of the best-known chi-squared statistics. In particular, the 
modified log-likelihood ratio statistic, the Freeman-Tukey statistic, Cressie-Read statistic and 

Pearson’s statistic can be obtained when δ = 0, δ = 1 2⁄ , δ = 2 3⁄  and δ = 1, respectively. 
While a CA of N is typically performed using Pearson’s chi-squared statistic ( δ = 1 ) 

generalisations of the analysis can be performed by considering ϕ(δ). To do so, we consider 
the SVD of the matrix of Cressie-Read residuals such that, for the (i, j)th entry, 
 

rij(δ) = ∑ aim(δ) λm(δ) bjm(δ)

M

m=1

 . 

 

Here, aim(δ) is the ith element of the mth left singular vector while bjm(δ) is the jth element of 

the mth right singular vector. These elements are constrained so that 
 

∑ pi•aim(δ) aim′(δ)

I

i=1

= {
1   m = m′
0   m ≠ m′

          ∑ p•jbjm(δ) bjm′(δ)

J

j=1

= {
1   m = m′
0   m ≠ m′

 . 

 

The value λm(δ) is the mth largest singular value of the matrix of Cressie-Read residuals for 
a given value of δ. Such values are arranged in descending order so that 1 > λ1(δ) > λ2(δ) >
⋯ > λM(δ) > 0. The value of M depends on the choice of δ; when δ = 0 or δ = 1 then M =
min(I, J) − 1 while M = min(I, J) for all other values of δ.  
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The choice of value that δ can take is important. While certain values of δ lead to some of the 
most popular chi-squared statistics (as we described above), Beh & Lombardo (2021) point 
out that Greenacre’s (2009) log-ratio analysis is a special case of this approach, as is the 
“parametric correspondence analysis” of Cuadras and Cuadras (2006). For log-ratio analysis, 

Greenacre (2009) confined δ to lie within the interval [0, 1] so that a comparison could be 
made between the classical approach to CA (δ = 1) and his log-ratio analysis (when δ = 0). 
Cuadra & Cuadras (2006) studied the link between classical CA and their HDD method 
(δ = 1 2⁄ ) and so confined δ to lie within [1 2⁄ , 1]. However, by using ϕ(δ) for performing CA 
virtually any value of δ can be considered. This is because Cressie & Read (2006) were not 

explicit about what values of δ should be used, citing that even large values (including δ = 5) 
could be used for detecting departures from independence. However, they did suggest that 

0 ≤ δ ≤ 3 2⁄  is appropriate for goodness-of-fit purposes. They also argued that 1 3⁄ ≤ δ ≤ 2 3⁄  
provides good coverage when assessing deviations from independence.  
 

2.2 Principal Coordinates 
The benefit of using the divergence statistic, ϕ(δ), in CA is that the technique involves a power 
transformation of the elements of the centred row and column profiles since  
 

rij(δ) =
1

δp•j
δ

((
pij

pi•
)

δ

− p•j
δ ) =

1

δpi•
δ

((
pij

p•j
)

δ

− pi•
δ ) . 

 

A visual summary of the association between the row and column variables of N can then be 
made by constructing a two-dimensional (say) correspondence plot. Such a visual summary 
plots the principal coordinate for each category. The ith row and jth column principal coordinate 
along the mth dimension of the plot is defined as fim(δ) = aim(δ)λm(δ)  and gim(δ) =
bjm(δ)λm(δ), respectively. Therefore, the ith row and jth column categories can be jointly 

represented in a two-dimensional plot by plotting (fi1(δ), fi2(δ)) and (gj1(δ), gj2(δ)).  

 

The properties concerning these principal coordinates are as follows. Firstly, it can be shown 
that 

∑ pi•fim(δ) fim′(δ)

I

i=1

= {
λm

2 (δ)   m = m′

0            m ≠ m′
          ∑ p•jgjm(δ) gjm′(δ)

J

j=1

= {
λm

2 (δ)   m = m′

0            m ≠ m′
 

 

so that, irrespective of the choice of δ, the contribution that each dimension makes to the 
association decreases as m → M. It can also be shown that the total inertia of N can be 
expressed as 

ϕ(δ)

n
= ∑ pi•fim

2 (δ)

I

i=1

= ∑ p•jgjm
2 (δ)

J

j=1

= ∑ λm
2 (δ)

M

m=1

 . 

 

Therefore, principal coordinates located far from the origin highlight those categories that play 
an important role in defining the nature of the association between the variables. Points that 
are close to the origin show those categories that are not deemed to be as dominant. More on 
the interpretation of distances of points from the origin will be now be discussed. 
 

2.3 Distance Measures 
A feature of this approach to CA is that it involves the power transformation of the elements of 

the row and column profiles; the jth element of the ith centred row profile is (pij pi•⁄ )
δ

− p•j
δ  and 

the ith element of the jth centred column profile is (pij p•j⁄ )
δ

− pi•
δ . Therefore, the Cressie-Read 

residual can be expressed in terms of these elements such that 
 

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000472



Page 4 of 6 
 

rij(δ) =
1

δp•j
δ

((
pij

pi•
)

δ

− p•j
δ ) =

1

δpi•
δ

((
pij

p•j
)

δ

− pi•
δ ) . 

 

So, this approach is consistent with Greenacre’s (2009) “power family 2”, although he did not 
establish the link between this “family” and ϕ(δ) and considered 0 ≤ δ ≤ 1. Therefore, the 
weighted squared Euclidean distance of the ith row profile, say, from the origin is 
 

dI
2(i, 0;  δ) = ∑ p•jrij

2(δ)

J

j=1

=
1

δ2
∑

1

p•j
2δ−1

[(
pij

pi•
)

δ

− p•j
δ ]

2J

j=1

= ∑ fim
2 (δ)

M

m=1

 . 

 

Thus, the Cressie-Read divergence statistic can be expressed in terms of this distance by 
 

ϕ(δ) = n ∑ pi•dI
2(i, 0;  δ)

I

i=1

= n ∑ ∑ pi•fim
2 (δ)

M

m=1

I

i=1

 

 

This result shows that, irrespective of the value of δ, if all principal coordinates lie at the origin 
of the correspondence plot, then the total inertia, ϕ(δ) n⁄  and hence the Cressie-Read 
divergence statistic will be zero. The further away from the origin that a point lies then the 
more dominant that its category is in defining the nature of the association in N.  
 

One can also measure the squared distance between the ith and i’th row (centred) profiles 
from by 

dI
2(i, i′;  δ) =

1

δ2
∑

1

p•j
2δ−1

[(
pij

pi•
)

δ

− (
pi′j

pi′•
)

δ

]

2J

j=1

= ∑ (fim(δ) − fi′m(δ))
2

M

m=1

 . 

For example 

dI
2(i, i′;  0) = 2 ∑ p∗jln (

pij

pi•

pi′j

pi′•
⁄ )

J

j=1

,                           dI
2 (i, i′;  

1

2
) = 4 ∑ (√

pij

pi•
− √

pi′j

pi′•
)

2J

j=1

,  

dI
2 (i, i′; 

2

3
) =

9

4
∑

1

p•j
1/3

[(
pij

pi•
)

2/3

− (
pi′j

pi′•
)

2/3

]

2J

j=1

     dI
2(i, i′;  1) = ∑

1

p•j
(

pij

pi•
−

pi′j

pi′•
)

2
J

j=1

 

 

are the logarithmic, Hellinger, “Cressie-Read” and chi-squared distances between the ith and 
i’th row profile, respectively. Thus, for these δ , the distance between two row principal 
coordinates in a correspondence plot can be assessed in terms of these measures of 
difference between their transformed profiles, thereby satisfying the “property of distributional 

equivalence”. Such a property applies for any value of δ. 
 

3. Result:  
 

We analysed data from the 2018 European Social Survey (ESS2018). By focusing on the 
“Human Rights” and “socio-demographics” variables, we cross-classified the perceived level 
of “richness” (on a six point scale ranging from “Very much like me” to “Not like me at all”) with 
the occupation of 19 different types of managers (as classified by ISCO88); see below. This 
data is available from the URL https://www.europeansocialsurvey.org/data.  
 

We performed four variants of correspondence analysis that stem from the Cressie-Read 
divergence statistic; when δ = 0, 1 2⁄ , 2 3⁄  and 1. In doing so we obtained a two-dimensional 
correspondence plot for each; see Figure 1. All four plots provide a similar interpretation of the 
association between the variables, but their quality and interpretation of distances are all very 

different. Figure 1a) displays the association using the logarithmic distance (δ = 0) between 
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the row (and column) profiles and visually shows about 72% of this association. By using δ =
1 2⁄  we obtain the same plot when using the technique of Beh, Lombardo & Alberti (2018); 
see Figure 1b). This plot displays the difference between the profiles using the Hellinger 
distance and describes about 66% of the association between the variables. Figures 1c) and 

1d) are the correspondence plots obtained when δ = 2 3⁄  and δ = 1, respectively, and visually 
describe 65% and 63% of the association. Of these δ values, the best quality plot arises for 

δ = 0 so that the association is assessed using the modified log-likelihood ratio statistic. The 
worst quality display occurs using the classical approach to correspondence analysis (δ = 1)! 
 

  

a) b) 
 

 

 

 

c) d) 
 

Figure 1: Correspondence plot of the ESS2018 data using the Cressie-Read divergence 

statistic with a) δ = 0, b) δ = 1 2⁄ , c) δ = 2 3⁄  and d) δ = 1. 
 

Suppose we now confine our attention to observing the distance between the row points in 
the four plots of Figure 1. As we described in Section 2.3, these distances can all be measured 
by a power transformation of the profiles thereby remaining consistent with Greenacre’s (2009) 
“power family 2” approach. However, each (row) distance measure emphasises the 
importance of the columns differently. The Hellinger distance is calculated without any 
influence from the column marginal information; this is one advantage of using this distance 
and was advocated by many including and Cuadras & Cuadras (2009). The distances between 

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000474



Page 6 of 6 
 

the row points for the remaining three plots all are all influenced by the columns in some way. 
The column information is weighted most heavily when calculating the chi-squared distances 

(δ = 1) while the logarithmic distance (δ = 0) gives the least weight to the columns. 
 

The managers occupation labels are defined as follows: 
 

M1: Managing director & chief executives 
M2: Administration and commercial  
M3: Business services & administration  
M4: Finance 
M5: Human resources 
M6: Policy & planning  
M7: Other business services & admin 
M8: Sales, marketing & development  
M9: Sales & marketing 
M10: Advertising & public relations 
 

M11: Research & development 
M12: Production & specialised services 
M13: Production managers in agriculture,  
         Forestry & fisheries 
M14: Agricultural & forestry production 
M15: Aquaculture & fisheries production 
M16: Manufacturing, mining, construction  
         & distribution 
M17: Manufacturing 
M18: Mining 
M19: Construction 

 

4. Discussion and Conclusion: 
 

This technique can be used to determine the “best” possible and “worst” possible visual display 
of the association using correspondence analysis by determining the value of δ that gives the 
“best” and “worst” quality correspondence plot. The advantage of this technique is that, 
irrespective of the value of δ, the interpretation of such a visual display can be made in terms 
of distances that are quantifiable and meaningful and involve power transformations of the 
centred profiles. One may refer to Beh & Lombardo (2021) for more details on this issue.  
 
While the technique outlined above is confined to the analysis of two cross-classified 
categorical variables, there is scope for it to be extended for the correspondence analysis of 
multiple categorical variables. This can be achieved using multivariate extensions of the 
Tucker3 method of decomposition; see Kroonenberg (2008) for a comprehensive discussion 
of this method. This could also be achieved by incorporating the extensions made to the 
divergence statistic outlined in Pardo & Pardo (2003) and Pardo (2010) into the framework 
described in this paper. Such work is yet to be undertaken and so is an exciting avenue to 
pursue as the development of correspondence analysis continues to grow. 
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