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Abstract: 
Extreme precipitation often cause important floods and  lead to  important societal and 
economical  damages. Rainfall extremes are subject to local orography features and their 
intensities can be highly variable. In this context, identifying climatically coherent regions is 
paramount to understand and analyze rainfall at the correct spatial scale. The main goal of 
this talk is to propose and study different dissimilarities and metrics that are tailored to 
capture both extremal behavior and hydrological features. We focus on blinding a margin-
free distance adapted to extremes with the  classical scale invariance constraint used in 
hydrological regional frequency analysis (RFA). In addition, we make the link between types 
of Kullback-Leibler divergences for extremes and unsupervised clustering techniques such 
as  k-mediods and hclust approaches.  

Both types of extremal dependences (asymptotic dependence and asymptotic 
independence) will be touched upon during this presentation. 

A simulation data study will be detailed.  One important aspect of this work is to be able to 
treat very large numerical climate outputs at the global scale. So, computationnal time and 
scalability will be key here. 
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1. Introduction:
The main motivation of this study is the analysis of heavy rainfall. Their distributions can
highly variable in time, space and intensity. This leads practitioners to look after spatially
coherent regions for which the distributional   features are homogeneous, up to a
multiplicative constant, and this reduces the uncertainties in the computation of high return
levels (high quantiles).  Historically,  the class of statistical approaches that aim at
partitioning a region of interest into homogeneous sub-regions is called regional frequency
analysis (RFA) in hydrology. In the classical RFA approach proposed by Dalrymple (see e.g
Dalrymple,1960) and developed by Hosking and his colleagues (see, e.g. Hosking and
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Wallis, 1987), it is implicitly assumed that rainfall locations are (conditionally) independent 
and a cluster is defined as a scale invariant region, in particular the upper tail index that 
drives extremal behaviors is assumed to be constant within a cluster. Consequently, by 
gathering stations within a cluster, the sample size increases and the estimation of this 
common shape parameter describing the rainfall upper tail is imporved. Still, the question of 
how to find homogeneous clusters remains complex. 

Various RFA techniques based on explanatory covariates (e.g., see Asadi, Engelke and 
Davi-son, 2018; Fawad et al., 2018, for recent work) were developed to identify 
homogeneous regions. Theses approaches consist in selecting covariates characterizing 
station, location or weather patterns to explain the spatial distribution of rainfall (e.g. see 
Hosking and Wallis, 2005; Burn, 1990; Evin et al., 2016). This variable selection step was  
used to predict the distribution at un-gauged sites. For instance, Carreau, Naveau and 
Neppel (2017) defined  the scale parameter of a Generalized Pareto Distribution, the 
archetypical distribution for threshold exceedances,  as a function of the weather station 
coordinates. However, picking relevant covariates requires data availability and subjectivity. 

Other techniques entirely bypassed the selection of covariates by working directly with the 
moments used for homogeneity tests (Saf, 2009). For example, Le Gall et al. (2021) 
considered a ratio of Probability Weighted Moments (Greenwood et al., 1979). This ratio  
has the interesting feature of being invariant on a homogeneous region and it is fast, easy to 
infer, and simple asymptotic convergence properties. Still, the main drawback of this semi-
parametric approach is that it is only focus on the marginal behaviors of rainfall data. The 
spatial dependence is completely ignored. Not accounting for the dependence leads to two 
issues. If two recording stations are strongly dependent, this strong link between the two 
stations reinforces the idea of grouping them in the same region. Accounting for the 
dependence in a RFA clustering algorithm should then improve its efficiency. The second 
issue is related to the statistical procedure to test the scale invariance homogeneity within a 
cluster. Assuming independence, while the data are dependent, leads to wrongly increase 
the rejection rate of homogeneity tests. To avoid two types of issues, various authors 
proposed clustering algorithms only based on the dependence structure. Recently, a 
parametric approach based on copula was introduced by Kim et al. (2019). They worked on 
cluster detection in mobility networks. Their proposal is to gather sites that are subject to 
intense traffic according to their covariates (e.g. geographical). The dependence strength 
within each cluster is then check by fitting a multivariate Gumbel copula. Non-parametric 
approaches based on exceedances were also proposed by Drees and Sabourin 
(2019);Janßen et al. (2020). Observations are projected onto the unit sphere. The dimension
is then reduced by clustering using K-means algorithm or extremes  (Janßen et al., 2020, 
Drees and Sabourin, 2019). 

In terms of spatial clustering of extreme rainfall and temperatures data,   a series of articles 
have been based on a non parametric approach based on the F-madogram (Cooley, 
Naveau and Poncet, 2006).  This metric is simply  the expected L1-norm between two 
random variables  that have been, marginally,  transformed into uniform variables, see 
Padoan et al. (2014) for asymptotic consistency. As explicit expressions can be made 
between multivariate max-stable vectors and the F-madogram, this interpretable metric has  
been used in a clustering context    by Bernard et al. (2013). These authors coupled the F-
madogram with Partitioning Around Medoids (PAM) algorithm (Kaufman and Rousseeuw, 
1990) to form homogeneous regions.
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It was  applied on various climatic variables such as temperature seasonal maxima (Bador et
al., 2015) and precipitation annual maxima (Saunders, Stephenson and Karoly, 2020). 

The main limit of this methodology is that, as all marginals were transformed to follow unit 
uniforms, all the information about the scale invariance requirement, a key feature of the 
RFA,  was  ignored. This leads us  to adapt this approach to the RFA context. 

2. Methodology: 

Two methods will be presented. 

2.1 Regular variation case

The first one is adapted to annual maxima (block of one year) and applied to yearly maxima 
of daily precipitation from 16 CMP6 global models. A new type of F-madogram is introduced 
and this dissimilarity incorporates a cost whenever the marginal invariance requirement is 
not satisfied. The asymptotic  properties of the associated estimate are studied. Then, this 
dissimilarity is applied to classical clustering algorithms like PAM and means. This method is
adapted to max-stable structures (regular variation case), see Le Gall et al. (2021). 

But, it may inefficient for multivariate vectors that are asymptotically independent in the 
upper tails (hidden regular variation case). 

2.1 Hidden regular variation case 

We propose a dissimilarity taking into account on the one hand the proximity of the marginal 
laws of the excesses. The proximity of marginal distributions is evaluated using the non-
parametric Kullback-Leibler estimator of excesses proposed by Naveau et al. (2014). 

The bivariate  dependence is estimated via the  tail dependence coefficient studied by 
Ledford and Tawn (1996). 

A new  dissimilarity is then proposed and studied by making a convex combination of the 
non-parametric Kullback-Leibler and the  tail dependence coefficient (see Zaffran and 
Naveau, 2021). 

3. Result: 

In this section, we focus on our main application: the analysis of  yearly maxima of daily 
precipitation from 16 CMP6 global models. 

Data description 

Global   climate  model outputs  like any numerical  simulations  correspond to an approximation 
of the true system under study, here the climate system. 

In the realm  of Detection and Attribution (D\&A), either in a transient setup or in the context of 
extreme event attribution (EEA),  numerous   review studies , see e.g. Naveau et al. (2020),    
listed different sources of variability, uncertainties and errors. In particular, these reviews 

Page 3 of 6

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000010



highlighted that  model error  in numerical experiments like the Coupled Model Intercomparison 
Project (CMIP)  can be large   and has to be taken into account in any D\&A statistical analysis}.  
This  research field aims at answering questions related to {\it relative} changes  between two  
worlds.In  D\&A with transient runs, the two worlds  correspond to global coupled climate runs 
with all forcings (ALL) and with only  natural forcings (NAT), respectively. 

To find relative changes, it is important to identify homogenous regions in the factual and 
counterfactual worlds. 

For example, the figure below compares the 10 clusters obtained from the counterfactual 
extreme rainfall of the Canadian model. The left panel, by only taking into account the 
dependence, provides a “noisy” clustering. In contrast, the right panel has been obtained from 
our new F-madogram that penalizes a marginal behavior (scale invariance). The obtained 
partionning provides then spatially and climatologically coherent subregions. 

The analysis for each of the 16 CMIP factual and counterfactual worlds is available upon 
request and will be shown. If time allowed, an algorithm will presented to combine all these 
clsuters (to gain in robustness). 

2. Discussion and Conclusion:
In this talk, the main goal is to present fast, easy-to-implement and tailored for extremes 
clustering algorithms. A key feature is to impose scale invraince (RFA) within each cluster, in
particular the upper tail index in each cluster should be identical. 
The main application  is the study of heavy rainfall, either recorded by weatehr stations (not 
shown here) or from global climate models under different scenarios. 
Bador, M., Naveau, P., Gilleland, E., Castella`, M., and Arivelo, T. (2015). Spatial clustering of 
summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe. 
Weather and climate extremes, 9:17–24. 
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Carreau, J., Naveau, P., and Neppel, L. (2017). Partitioning into hazard subregions for regional 
peaks-over- threshold modeling of heavy precipitation. Water Resources Research, 53(5):4407–4426.

Coles, S., Bawa, J., Trenner, L., and Dorazio, P. (2001). An introduction to statistical modeling of 
extreme values, volume 208. Springer. 

DALRYMPLE, T. (1960). Flood-frequency analyses, manual of hydrology: Part 3 Technical Report, 
USGPO,.

Davison, A. C. and Huser, R. (2015). Statistics of extremes. Annual Review of Statistics and its 
Application, 2:203–235. 

de Fondeville, R. and Davison, A. C. (2018). High-dimensional peaks-over-threshold inference. 
Biometrika, 105(3):575–592. 

DREES, H. and SABOURIN, A. (2019). Principal component analysis for multivariate extremes.arXiv 
preprintarXiv:1906.11043.

Evin, G., Favre, A.-C., and Hingray, B. (2018). Stochastic generation of multi-site daily precipitation 
focusing on extreme events. Hydrology and Earth System Sciences, 22(1):655–672. 

Ferreira, A. and de Haan, L. (2015). On the block maxima method in extreme value theory: PWM 
estimators. The Annals of Statistics, 43(1):276–298. 

Greenwood, J. A., Landwehr, J. M., Matalas, N. C., and Wallis, J. R. (1979). Probability weighted 
moments: definition and relation to parameters of several distributions expressable in inverse form. 
Water resources research, 15(5):1049–1054. 

Hosking, J. and Wallis, J. (1993). Some statistics useful in regional frequency analysis. Water 
resources research, 29(2):271–281. 

Hosking, J. R. M. and Wallis, J. R. (2005). Regional frequency analysis: an approach based on L-
moments. Cambridge University Press. 

JANSSEN, A., WAN, P. et al. (2020).k-means clustering of extremes.Electronic Journal of 
Statistics141211–1233.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data Clustering: A Review. ACM Comput. Surv., 
31(3):264–323. 

KATZ, R. W., PARLANGE, M. B. and NAVEAU, P. (2002). Statistics of extremes in 
hydrology.Advances in WaterResources251287–1304.

KIM, H., DUAN, R., KIM, S., LEE, J. and MA, G.-Q. (2019). Spatial cluster detection in mobility 
networks: a copula approach.Journal of the Royal Statistical Society: Series C (Applied 
Statistics)6899–120.

Jalbert, J., Favre, A.-C., B élisle, C., and Angers, J.-F. (2017). A spatiotemporal model for extreme 
precipitation simulated by a climate model, with an application to assessing changes in return levels 

Page 5 of 6

Proceedings 63rd ISI World Statistics Congress, 11 - 16 July 2021, Virtual P. 000012



over North America. Journal of the Royal Statistical Society: Series C (Applied Statistics), 66(5):941–
962. 

Kaufman, L. and Rousseeuw, P. J. (1990). Finding groups in data: an introduction to cluster analysis, 
volume 344. John Wiley & Sons. 

Le Gall, Naveau P, Favre A.C, Tuel A (2021). Non-parametric Regional Frequency Analysis (personal
communication)

Li, M., Li, X., and Ao, T. (2019). Comparative Study of Regional Frequency Analysis and Traditional 
At-Site Hydrological Frequency Analysis. Water, 11(3):486. 

Malekinezhad, H. and Zare-Garizi, A. (2014). Regional frequency analysis of daily rainfall extremes 
using L-moments approach. Atmo śfera, 27(4):411 – 427. 
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