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Background

Causal discovery

“We view the task of causal discovery as an induction game that scientists play
against Nature. Nature possesses stable causal mechanisms that, on a detailed
level of descriptions, are deterministic functional relationships between variables,
some of which are unobservable. These mechanisms are organized in the form of
an acyclic structure, which the scientist attempts to identify from the available
observations” (Pearl, 2009)

• Structural Causal Models (SCMs): 
• Directed Acyclic Graphs (DAGs): .  iff  is a cause of 
• if Markovian, same factorization as Bayesian Networks:

 Conditional independences are the link between SCMs and properties of data
that we can test or detect, using observational data alone

However, different DAGs, may imply the same set of conditional independence
statements:  we are able to distinguish up to a Markov equivalence class using
observational data alone

Interventions

SCMs do not only describe a joint distribution, but also how this distribution
changes as a result of external interventions

We can envisage two types of interventions:

Hard interventions:

• ;
•

Soft interventions

• ;
•

 If interventional data is available, we can distinguish between DAGs inside the
same Markov equivalence class by checking the local changes in the distributions
implied by an intervention.

However we still have -Markov equivalence classes of DAGs

Goal

1. To evaluate the posterior distribution of different causal structures 
 using a mixture of observational and (soft)

interventional Gaussian data
2. To estimate the model parameters jointly using  datasets coming from

different experimental settings;

A Bayesian approach

Likelihood

•  is an index set of all those observation for which node  is not intervened
upon;

• The parameters  come from a decomposition of : ;
•  are the new parameters induced by the soft intervention;

Prior specification

• Prior on causal structures:

• Priors on parameters  (similarly for ):

where .

 (conjugate) DAG-Wishart prior with hyperparameter chosen through Geiger-
Heckerman (2002) prior construction method; ! Geiger-Heckerman (2002) prior
construction method guarantees score equivalence of I-Markov equivalence DAGs

Posterior inference

• Posterior of , obtained through a Partial Analytic Structure (PAS) algorithm
(Godsill, 2012) which proceeds by iteratively updating the DAG and the
parameters;

Simulation

Settings

• 50 DAGs with probability of edge inclusion  are generated;
• For each DAG:

1. • An observational dataset of size  with  variables is generated from
a linear SEM with weights uniformly drawn in the interval 
and then standardized

2. • 5 intervention targets are sampled without replacement;
3. • For each intervention target, a dataset of size  with  variables is generated

from a linear SEM and then standardized. The weights associated with the
parents of the intervened node are then multiplied by a factor ;

•
•

Results
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π = 0.5

nobs q = 10
[−2, −0.5] ∪ [0.5, 2]

nint q

α
α ∈ {0.1, 0.5}
(nobs,nint) ∈ {(200, 200), (1000, 40)}
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