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Abstract

A unified stochastic framework for all portfolio default models with conditionally
independent and identically distributed (CIID) default times is presented. Desir-
able statistical properties of dependent default times are introduced in an axiomatic
manner and related to the unified framework. It is shown how commonly used mod-
els, stemming from quite different mathematical and economic motivations, can be
translated into a multivariate frailty model. After a discussion of popular specifi-
cations in this regard, two new models are introduced. The vector of default times
in the first approach has an Archimax survival copula. The second innovation is
capable of producing default pattern with interesting statistical properties. The
motivation for the latter approach is to add an additional source of jump frailty
to a classical intensity-based approach. An approximation of the portfolio-loss dis-
tribution is available in both cases. The paper closes with a discussion of various
generalizations of the generic framework.

Keywords: Portfolio credit derivative, De Finetti’s Theorem, copula,

large-homogeneous portfolio approximation, multivariate frailty model.

1 Introduction

Following the seminal work of [Vasicek 1987], various related portfolio default models
have recently been proposed, see, e.g., [Li 2000, Frey, McNeil 2001, Schénbucher 2002,
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Hull, White 2004, Guégan, Houdain 2005, Baxter 2006, Kalemanova et al. 2007, Albrecher et al. 2007,

Mai, Scherer 2009a| to provide some examples. Even though these papers use diverse
economic motivations, rely on alternative mathematical techniques', and focus on dif-
ferent applications?, all models share as common ground a large homogeneous portfolio
approximation, providing a convenient tool for applications that require the loss distri-
bution of some large portfolio®. In this paper, a unified stochastic framework for all
models in this spirit is constructed. Such a treatment provides several advantages:

e First of all, the mathematical structure behind this class of models becomes fully
transparent. Instead of relying on specific distributional assumptions and related
mathematical concepts, we provide as a generic framework a multivariate frailty
model that uses the classical theorems of de Finetti and Glivenko-Cantelli as key
ingredients to obtain the portfolio-loss distribution. In contrast to several of the
aforementioned examples, the present construction is consistent with respect to
time and does not rely on some fix maturity (or a discrete number of maturities).

'The starting point might be a multivariate structural-default model, a certain dependence structure
/ copula for the vector of default times, a frailty model, or some latent-factor construction.

2The most important ones being risk-management and the pricing of portfolio derivatives.

3We focus on the pricing of insurance premium for tranches of a credit portfolio. Note, however, that

applications to other insurance portfolios can be treated similarly.
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e Given a portfolio of d credits and denoting the vector of default times by (71, .. ., Td)/,
various statistical properties have been investigated with respect to the implied de-
pendence structure and resulting default pattern of the modelled default times, as
well as with respect to the implied portfolio-loss distribution. Having a unified
framework at hand, an objective comparison of alternative model specifications is
facilitated. We axiomatically define a list of (desirable) statistical properties and
investigate the unified framework in this regard. Obviously, this is much more effi-
cient compared to a case-by-case analysis. Later on, we explicitly rewrite a battery
of popular models in our language and investigate their statistical properties.

e Based on a generic framework, it is often easier to truly understand the mathe-
matical concept behind a generalization of some model, e.g. to random recovery
rates or hierarchical dependence structures. Hence, there is a fair chance that one
can transfer the idea of a generalization from one class of models to some other.
Moreover, for two concrete cases, we show how given models can be combined to a
framework that inherits all desirable statistical features of the building blocks. We
show that it is even possible to combine alternative models over time, using them
as some sort of local correlation model. Finally, we obtain a deeper understand-
ing of how far we can stretch the limits of CIID-models and, related, what model
generalizations come at the price of losing the mathematical viability.

Throughout we consider a portfolio of d defaultable assets and let (71, ..., Td)/ denote the
vector of their default times. Both applications, the pricing of portfolio credit deriva-
tives as well as risk management of credit portfolios, require the distribution of the
accumulated loss within the reference portfolio up to time t. Currently, one of the most
prominent applications in the context of portfolio credit derivatives is the pricing of col-
lateralized debt obligations (CDOs). A CDO can be seen as an insurance contract for
certain loss pieces of a credit portfolio. A convenient, and for sufficiently large portfolios
widely used, assumption is a homogeneous portfolio structure with respect to recovery
rates and portfolio weights. This allows to express the premium and default leg of the
CDOQ’s tranches as options on the (relative) portfolio-loss process {L;}+>0, defined as
Ly = é E?:l Lir<sy, for t > 0. From a mathematical perspective, it is required to
compute expectations of the form:

E[f(L)] = f(z)P(L; € dx), f non-linear (collar type),
[0,1]

where f depends on the considered tranche and the recovery rate. Hence, it is important
to construct the vector of default times in such a way that the distribution of L; can
be identified or, at least, efficiently approximated. Due to the large dimensionality of
the problem*, one has to accept simplifying assumptions to circumvent time-consuming
Monte-Carlo techniques. In this regard, a popular class of models is based on the follow-
ing ansatz: there is a market factor M, conditioned on which all default times are iid with
distribution function ¢ — F}; := function(M,t). The core motivation for these models is

4A typical convention for credit derivatives is d = 125, insurance portfolios are often even larger.
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to approximate the distribution of L; by the (more tractable) distribution of the market
factor M. The seminal model in this spirit is [Vasicek 1987, Li 2000, specifying M as a
normal random variable, which results in a Gaussian dependence structure. Since this
copula has several drawbacks, e.g., zero tail dependence, symmetric dependence pattern,
and an insufficient fit to quoted CDO spreads, several authors extended the approach
to other market factors®. More dynamic models are obtained when the market factor
M = {M,;}+>0 is a non-trivial stochastic process and F; := function(M;). Such a model
is proposed by [Mai, Scherer 2009a] with {M;};>0 being a Lévy subordinator®.

From a practical perspective, a calibration of the model typically relies on market quotes
of a) portfolio CDS and single-name CDS and b) CDO tranche spreads. Considering
a), these are not affected by the dependence structure between the default times, but
do depend on the respective univariate default probabilities. Hence, the required term-
structures of univariate default probabilities can be extracted. Considering b), after hav-
ing fixed the marginal default probabilities, spreads of the different tranches of a CDO
can be used to calibrate the dependence parameters of the model. For this, it is very con-
venient if the model’s dependence parameters do not affect the (already fixed) marginal
default probabilities, i.e. the model allows for a separation of dependence structure from
default probabilities. From a theoretical perspective, such a separation naturally invokes
a copula model. When the model is to be estimated to observed losses, it is crucial to
explicitly know the model’s dependence structure. Thus, we are especially interested in
models whose copula can be identified explicitly.

Besides the generic frailty model and the investigation of its statistical properties, we
present as another contribution two new multivariate default models with very inter-
esting statistical properties. Both models allow for a convenient approximation of L;
by the distribution of the market factor and can thus be implemented without Monte-
Carlo simulation. The first ansatz is based on a scale mixture of Lévy processes. The
resulting survival copula of (7q,... ,Td), is revealed as a scale mixture of Marshall-Olkin
copulas, constituting a proper subclass of Archimax copulas, see e.g. [Li 2009, p. 253].
The second extension is based on processes of CGMY-type, see [Carr et al. 2003]. This
model incorporates stylized facts such as default clusters and excess clustering. It

SFor instance, [Hull, White 2004] use a Student t-distribution, [Guégan, Houdain 2005,
Kalemanova et al. 2007] a NIG distribution, and [Albrecher et al. 2007] a general infinitely
divisible distribution. In a related fashion, [Schénbucher 2002] assumes a positive random variable
as market factor and constructs the model in such a way that the default times have an Archimedean
survival copula. However, M is a single random variable in all aforementioned models, which equals
the random parameter of a parametric family of distribution functions.

5The resulting survival copula of (71, ..., Td)/ is of Marshall-Olkin kind, see [Mai, Scherer 2011]. The
Marshall-Olkin distribution is well-studied and has several desirable properties for dependent de-
faults: an interpretation as a frailty model, asymmetric tail dependencies, and a singular compo-
nent, i.e. positive joint default probabilities. Hence, Marshall-Olkin distributions have already been
proposed for credit- and insurance-risk applications by [Giesecke 2003, Lindskog, McNeil 2003]. How-
ever, it is well-known that the Marshall-Olkin distribution is characterized by the lack-of-memory
property, see e.g. [Marshall, Olkin 1967, Barlow, Proschan 1975, Galambos, Kotz 1978]. This implies
a somewhat unrealistic assumption for dependent defaults, since it excludes direct contagion effects.
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can be considered as an extension of a classical intensity-based ansatz in the spirit of
[Duffie, Garleanu 2001], when an additional source of frailty - a latent Lévy subordinator
- is present.

The remaining paper is organized as follows: a general probabilistic framework for latent
one-factor models and a review of commonly used examples (reformulated as frailty
models) is given in Section 2. Two new models are introduced and discussed in Sections
3 and 4. Possible generalizations of the models are presented in Section 5. Besides
technical proofs, the Appendix recalls, for the readers’ convenience, the required notion
of Lévy subordinators and the involved copula families.

2 A general CIID-framework

We consider a vector of default times (71,...,74) € [0,00)%, defined on a probability
space (£, F,P). The first aim of this article is to present a generic representation that
contains all aforementioned models and, in fact, all possible models relying on the as-
sumption of conditionally independent and identically distributed (CIID) default times.
Assume that (71, ...,74) is constructed on a probability space (9, F,P) by the following
generic two-step method.

Definition 2.1 (The canonical CIID-construction)

1. Let {F}}+>0 be a non-decreasing, right-continuous stochastic process with left limits,
such that Fy = 0 and limy;_. F; = 1 hold almost surely. For fized w € 2, we
consider t — Fy(w) as the path of a distribution function of some random variable
on (0,00).

2. Conditioned on {Fi}i>o, let (71, ... ,Td)l be 1id with distribution function t — Fy.

A canonical construction of such a model on a probability space (€2, F,P) is given by
Ti=inf{t>0: U, <R}, k=1,...,d, (1)

where Uy, ...,Uy are iid with Uy ~ Uni[0, 1] and {F}}+>¢ is independent of the vector
(Uy,..., Ud)/. Such a multivariate default model is called CIID-model in the following,
CIID being the acronym of conditionally independent and identically distributed. On
the one hand, this CIID-construction is a strong and restrictive assumption. For in-
stance, it implies that the law of the default times is invariant under permutations of
the components of (7, ... ,Td)/. In particular, each 7 is distributed according to the
distribution function p(t) := E[F;], ¢ > 0. Furthermore, it implicitly inherits a large
homogeneous portfolio assumption, since the construction above is independent of the
dimension d in the sense that one can consider (as an immediate extension of (1)) an
infinite sequence {7y }ren of default times. On the other hand, a seminal theorem of
De Finetti, see [De Finetti 1937|, guarantees that all infinite exchangeable sequences of
random variables can be constructed as above. This implies that the approach is more
general than it might have appeared at first. From a practical perspective, the approach
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is general enough to comprise all commonly used default models which are tractable
enough to circumvent a Monte-Carlo simulation when calibrated to market quotes. It is
shown below how several popular models are embedded into the general CIID-framework
from Definition 2.1 by identifying the respective specification of {F}}¢>o.

2.1 The portfolio loss distribution

The key advantage of CIID-models is that the distribution of the portfolio-loss process
L; = (ll{ngt} +...+ ]l{TdSt})/d, t > 0, is available. More precisely:

k d _
IP’(Lt = g) = (k>E[Ftk(1Ft)d M, k=0,1,....d

For large d > 2 the complexity of the above expectation value as well as the size of
the binomial coefficient prevent this formula from being of practical value. Since CIID-
models are typically applied in large dimensions, the numerical difficulties are avoided
by working with an infinite portfolio size (letting d — oo) which allows to approximate
P(L; € dx) by P(F; € dx). For instance, it is not difficult to verify the following lemma,
a proof of which is provided in the Appendix.

Lemma 2.2 (Approximation of the portfolio loss)
Consider the canonical probability space (2, F,P) of a CIID-model as above. Then

P( lim sup|F — Ly| =0) = 1.

d—o00 >0

Alternatively, for each T > 0 it holds true that

{Li}eepr) — {Fthepr, d— o0,

in the space L*(Q x [0,T]) of square-integrable stochastic processes on [0,T].

As an application, the above result is used to justify approximations (for sufficiently
large d) such as

E[f(L)] = | f@)P(Licdr)~ [ f(z)P(F; € dx).
(0,1] [0,1]

On a high level, approximation results such as Lemma 2.2 are called large homogeneous
portfolio approximation. In our framework, it is possible to obtain this result as an
application of the Theorem of Glivenko-Cantelli. Unlike most of the aforementioned
references, we do not have to fix a certain time ¢ > 0. This is due to the new formulation
as a frailty model, which reveals the underlying structure of (time consistent) CIID-
models.
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2.2 Properties of CIID-models

CIID-models in general are highly appreciated for their mathematical viability. However,
for the selection of an appropriate model it is crucial to understand the different depen-
dence structures that are implied by the various possible specifications. In an axiomatic
way, a list of properties of the resulting vector of default times is specified below.

(Sep)

(Exc)

The separation of dependence structure from marginals is extremely convenient
for practical applications (e.g. the calibration or estimation of the model in two
steps) and is also required for the derivation of the model’s implied copula. Given
the term structure of default probabilities, i.e. t — p(t), the separation condition
(Sep) is valid if the stochastic model for {F;};>¢ is specified in such a way that
E[F;] = p(t) for all ¢ > 0. This means that the randomness of {F}}:>o only affects
the dependence structure, but not the marginal default probabilities.

The joint distribution function of (71, ... ,Td), in a CIID-model, i.e. a model for the
market frailty {F;}+>0, is a priori implicit. More clearly, it is given by

d d
P(ry <ty,...,7¢ <tq) = E[E[ H ]l{TkStk}HFt}tZOH - E[ H E[H{Tkétk}‘{Ft}tEOH
k=1 k=1

=E[F, - Fy,], ti,...,ta>0.

In some specifications the latter expectation value can be computed explicitly and
the multivariate distribution admits a well-known form. In such a case, one can
conveniently rely on known statistical properties of the model to judge on its re-
alism. Some distributions even allow for an intuitive economic interpretation. If,
in addition, the model satisfies the separation property (Sep), then the marginal
distributions of the default times are given a priori. In this case, the dependence
structure can be studied from the implied copula or, if more convenient, from the
implied survival copula. If the prespecified term structure of default probabilities
t — p(t) is continuous, then the implied copula C' and the survival copula C of the
default times are given by

C’(ul,...,ud) :E[Fp—l(ul)'” Fp_l(ud)]) (2)
C(ula cee 7ud) = E[(l - prl(l—ul)) e (1 - prl(l—ud))]v (3)
where p~1(-) denotes the generalized inverse of p(-) and uy, ..., uq € [0, 1].

Time series of realized corporate defaults or insurance claims often exhibit points
in time with accumulations of defaults. This property is termed excess clustering.
It might even be reasonable to support multiple defaults at the same time. In
the general CIID-framework this corresponds to possible jumps in the paths of
{Fi}t>0. In the language of multivariate distribution functions, this corresponds
to a singular component of the implied copula of (71,... ,Td)/.

p.3758
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(Fs)

(Tdc)

(Den)

2.2 Properties of CIID-models

The qualitative structure of the underlying frailty distribution {F;}:>o is important
to understand the dynamics of the model. Three cases are distinguished:

(Fsg) The source of frailty is static, i.e. for each ¢t > 0, F} is measurable with respect

to the o-algebra (,.0(Fs : 0 < s < u). This situation is typical for mod-
els which define {F;}4>0 as a member of a parametric family of distribution
functions with randomly drawn parameter. In most cases, {F}}i>0 is mono-
tonically affected by this parameter. This prevents the model from supporting
changing market conditions, since the market frailty process {F;};>o cannot
change randomly.

(Fse) The source of frailty is dynamic, but the innovations of the process {Fi}+>0

are driven by a time-homogeneous stochastic process. Interpreted from an
economic perspective, this implies that the market uncertainty is affected by
random changes, but these changes occur in a time-homogeneous pattern.

(Fsg) The source of frailty is dynamic and the innovations of the process {F}}i>0

are driven by a time-inhomogeneous stochastic process. From the economic
point of view, this allows for realizations with randomly varying default envi-
ronments. In particular, a typical realization of {F}};>¢ inherits time periods
with different local default probabilities and dependence structures.

A measure of dependence for the likelihood of joint early defaults is tail dependence.
In the context of default risk, a positive lower tail dependence coefficient of the
default times corresponds to a positive limit (as time goes to zero) of pairwise
default correlations, see [Schonbucher 2003, Chapter 10]. Hence, this property is
of specific interest for models with very small default probabilities or small time
horizon. Additionally, empirical studies suggest that models supporting positive
lower tail dependence of the default times are more successful in explaining CDO
quotes. In mathematical terms, the lower tail dependence coefficient \; of a pair
(74, Tj)/ of default times in a CIID-setup is given by’

. (4)

N o= lmP(r < t|7 <t)=li E[F/]
pi=lmPlr < t)r <t) =lim E[F]

When implementing the model, it is convenient if the distribution of F; is tractable
for all £ > 0. Most convenient is the case when the density of F} is available. Some
specifications allow for a closed-form expression without special functions. In some
models the density is only available through Laplace-inversion techniques.

It is shown below how various popular models are comprised in our general CIID-
framework. These models are then discussed with regard to the aforementioned proper-

ties.

"Thus, this important measure of dependence is related to the specification of F; in a rather simple
way. The derivation of (4) is straightforward and therefore omitted.

p.3759
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2.3 The Gaussian copula model and extensions

[Vasicek 1987, Li 2000] generalize the seminal univariate structural default model of
[Merton 1974] to d identical firms. Dependence is introduced through a single-factor
structure: the idiosyncratic factors €y, ..., eq and the market factor M are iid standard
normally distributed random variables. Given the prespecified term structure of default
probabilities ¢ — p(t) as model input, the default time of firm k is defined as

=inf{t>0:/pM+/1—pe < '(p(t)} (5)

:inf{tZO:Uk < @(q)_l(p\(z)_;p\/ﬁM)}, k=1,....d,

where p € (0,1) adjusts the dependence, ® denotes the distribution function of the
standard normal law, and Uj,...,U; are iid and obtained by Uy := ®(e;) ~ Uni0, 1].
By construction, the vector (71, ... ,Td>/ has a Gaussian copula with identical pairwise
correlation p as dependence structure and marginal distributions P(r, < t) = p(t).
Reformulating the model in the general CIID-setting one obtains F; := @((@fl(p(t)) —
VPM)//T=Dp), for t > 0. Summing up, the distribution of L; can be approximated
via the standard normal distribution of M. Generalizing this approach to distributions
other than the normal, [Hull, White 2004] propose to replace it by the (heavier tailed)
Student ¢-distribution. In a similar spirit, [Albrecher et al. 2007] consider a Lévy process
X = {Xi}iep0,1), satisfying E[X1] = 0 and Var[X;] = 1. Letting XO XD hedr1
independent copies of X and p € (0,1), they define the individual factors € := X{li)p,
k=1,...,d, and the market factor M := X ,()0). Then, construction (5) is replaced by

T :=inf {t >0: M+6k<H[1](())}
:mf{tzo:UkSHU,p]( o (p@®) = M)}, k=1,....d,

where Hp;) denotes the distribution function of X; and Uy, ..., Uy are iid and obtained
by Uy = Hp_p(ex) ~ Uni[0,1]. This obviously corresponds to the choice F} :=
Hy_p (H[i1 (p(t)) —M), for t > 0, in our general CIID-setup. When X is a Brownian mo-
tion, this approach is equivalent to (5). Considering other specifications, [Moosbrucker 2006]
uses a Variance-Gamma process, [Guégan, Houdain 2005, Kalemanova et al. 2007] a Nor-
mal Inverse Gaussian (NIG) process, and [Baxter 2006] the sum of a Brownian motion
and a Variance-Gamma process. Again, the distribution of L; can be approximated via
the distribution of the single random variable M, which is easy to handle.

Properties of the model

(Sep) In this specification one can take ¢ — p(t) as model input for the univariate

) @
marginal laws and obtains E[F}] = p(t), t > 0.
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(Cop) The copula behind the model is identified in the Gaussian specification and for
Student t-factors as the respective distribution’s copula. For the general Lévy
framework, the implicitly defined copula in (2) and (3) is not well-studied.

(Exc) In all specifications, the resulting copula (explicitly or implicitly given) does not
have a singular component, so multiple defaults at the same time are impossible.
Equivalently, ¢ — F} is almost surely continuous (for continuous ¢ — p(t)).

(Fsg) The randomness in this class of models is induced by the randomness of the param-
eter of an otherwise deterministic distribution function. This makes these models
static and also difficult to interpret.

(Tdc) Ome major disadvantage of a Gaussian dependence structure is zero tail depen-
dence, see [McNeil et al. 2005, p. 211]. This means that joint early defaults are very
unlikely. For other model specifications with a heavier tailed common factor, posi-
tive tail dependence is possible. For instance, it is shown in [Albrecher et al. 2007]
that for the Lévy construction, the lower tail dependence coefficient of any pair of
default times is given by

H[l—p] (l‘ - y)

2

T—==0 Jr H[l] ()

(Den) The density of F, t > 0, is known for various choices of the common factor, making
this class of models quite viable.

When calibrating the Gaussian model to the CDO market it is often the case that for
matching spreads of senior tranches extremely high correlation parameters are required.
When distributions with heavier tails are used, e.g. the NIG model, the model seems to
be better suited for a calibration to the CDO market.

2.4 A model based on mixtures of exponential distributions

[Marshall, Olkin 1988| show that the dependence structure behind iid exponential ran-
dom variables with randomly drawn parameter is Archimedean. Denoting the Laplace
transform of the positive random variable M by ¢(z) := Elexp(—x M)], = > 0, it fol-
lows that P(el/M > t1,...,€q/M > td) = Cw(ga(tl), e ,go(td)), t1,...,tqg > 0, where
€1,...,€q are iid unit exponentially distributed and independent of M. The function
Cyp(u, ... uq) == p(e H(w) + ...+ ¢ Y(uq)) is called Archimedean copula with gener-
ator ¢. Transforming the components to standard uniform marginals, it follows that

Wireoo V) = (o( L)oo (2))

[Schénbucher 2002] uses this probabilistic model for portfolio credit risk and derives a
large homogeneous portfolio approximation. Formulated as a frailty model and using

10
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the notations from above, given the prespecified term structure of default probabilities
t +— p(t), one defines®

Te:=inf {t>0:1-p(t) < Vi},
:inf{tZO:ng1—exp(—Mg0_1(1—p(t)))}, k=1,...,d,

where Uy, ...,Uy are iid obtained by Uy := 1 — exp(—¢) ~ Uni[0, 1]. Translating this
construction into the present CIID-setup yields F; := 1 — exp( — Mgo_l(l — p(t))),
for ¢ > 0. Summarizing, this implies that the distribution of L; can be approximated
using the distribution of M and default times defined in this way have an Archimedean
survival copula C,°.

Properties of the model

(Sep) The separation property holds, i.e. the term structure of default probabilities ¢ —
p(t) can be prespecified and E[F}] =1 — ¢(¢ (1 — p(t))) = p(t), t > 0.

(Cop) By construction, the copula behind the model is of Archimedean kind. Such cop-
ulas, being parameterized by a function ¢, are quite flexible. On the other side,
they do not provide a firm economic interpretation.

(Exc) Multiple defaults at the same time are not possible, since Archimedean copulas do
not assign positive mass to the diagonal of the unit cube. Stated differently, the
process {F}}i>0 is almost surely continuous (for continuous t — p(t)).

Fsg) Asoutlined above, the model is based on an exponential distribution with randomly
S)
chosen parameter. Hence, the model is static and difficult to interpret from an
economic perspective.

(Tdc) The upper and lower tail dependence parameters of the Archimedean copula C,,
are given by

0, 4,0,(0) < o0 50/(2 t)

S A =2 lim 22Y
2—2 lglrgl fp,((il;), else o t%g o' (t)

Ay =

see [Joe 1997, p. 103ff]. For several classes, these parameters are positive and might
even be unequal.

8The first line indicates the idea of [Schénbucher 2002]: starting from the canonical construction of a
default time with distribution function ¢ — p(t), see [Schonbucher 2003, p. 122|, dependent trigger
variables (Vi,..., Vd)' are used as the source of dependence.

9Tf one wishes to define default times in such a way that they have C,, as copula instead of survival cop-
ula, one must use F; := exp ( —Mop? (p(t))), t > 0. This can be deduced by replacing (Vi,..., Vd)/
in the above derivation by (1 —V1,...,1— Vd)/. This alternative ansatz can be used to switch tail
dependencies: the lower tail dependence of C', equals the upper tail dependence of its survival cop-
ula, and vice versa. Since lower tail dependence between default times is desirable, one should use
the latter approach when C, exhibits lower tail dependence and the first approach when C,, exhibits
upper tail dependence.

11
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(Den) The density of F}, t > 0, is known for various choices of the common factor, ren-
dering this class of models quite viable. A list of popular generator functions ¢ and
their associated random variables M is provided in, e.g., [Charpentier, Segers 2009].

2.5 An intensity-based approach

On a univariate level, intensity-based models are introduced and developed further
in, e.g., [Jarrow, Turnbull 1995, Madan, Unal 1998, Lando 1998, Duffie, Singleton 1999].
On a multivariate level, so called doubly-stochastic approaches and extensions thereof are
considered in, e.g., [Duffie, Garleanu 2001, Das et al. 2007, Duffie et al. 2007, Yu 2007].
A single-factor specification, which fits into the setup of general CIID-models, can be
constructed as a special case of the model in [Duffie, Garleanu 2001]. On a probability
space (€2, F,P) consider a positive stochastic process {A¢}+>0, which is P-almost surely
integrable on [0,¢] for all ¢ > 0 and satisfies f(O,oo) Asds = 0o. Independently of this
market intensity process, let €1,..., €4 be iid unit exponential random variables. The
vector (71,... ,Td)/ of default times is defined by setting

t
Tk;:jnf{t>0:Mt26k}7 Mt::/)\sds, kzl,,d
0

Translated into the setup of CIID-models, this is equivalent to modeling {Fi}i>o as
F; :=1—exp(—M,), for t > 0. A prominent choice for {\:};+>0 is a basic affine process.
This means that {\:};>0 has parameters (k,0,0,p,l) and is defined as the (unique)
solution of the stochastic differential equation (SDE)

d\i = K (0 — )\t) dt +o0\/ A\t dBy +dZy, Ao > 0, (6)

where {B;}+>0 is a standard Brownian motion and {Z;}+>¢ is an independent compound
Poisson process with intensity [ and exponential jump sizes with mean 1/u. Besides
the immediate interpretation of the SDE for A, one important advantage of using basic
affine processes is that the Laplace transform of M; is available from general results in
[Duffie et al. 2000]. More clearly, it is known that

E[e—Q? Mt] — eOé(lII,t)-‘rﬁ(ﬁ,t) >‘0, T 2 0’ (7)
where the functions a and 3 are given by

1— eb(z)t

Bla,t) = c(z) + d(x) eb®)t’

) + d(x)eb@?

a(@,t) = 2%( o log (C( c(x) 4 d(x) )+ 207(537))
2ulog (1 — eblo)t _ u(c(z) + d(x)eb(a:)t))
+l( 2ukK + 2x — o2pu? )
—t _ 2plog (— p(e(z) + d(x)))
+l(1_l~bc($) B 2uk + 2z — o2 p? >’ 9)
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with b(x), ¢(z), and d(x) defined by

K+ VK2 +202x —k+ VK24 202z
b(z) =—VK2+2022, c(x) .

- —22x ,d@) =

—2x

This allows to compute p(t) = E[F}] in closed form, as p(t) = 1 — E[exp(—M,;)] =
1 —exp (a(1,t) + B(1,t) Ao).

Properties of the model

(Sep)

(Tdc)

(Den)

All parameters (k, 6,0, u,l) of a basic affine process enter the formulas for the
marginal and the joint default probabilities. There is no parameter that solely
affects the dependence structure; a separation is not possible. This complicates
the calibration of the model and the interpretation of the parameters. However,
the five parameters (k, 0, o, i1, 1) provide a good fit of the function ¢ — p(t) = E[F}]
to market quotes of single-name CDS or portfolio CDS.

The copula behind the model is unknown. This makes it difficult to study the
underlying dependence structure of default times.

[Das et al. 2007] find evidence that intensity-based approaches fail to explain excess
clustering as observed in the markets, e.g. during the recent credit crisis. This is
due to the fact that the integrated intensity process is continuous, and, hence, the
random distribution function {F;};>¢ is continuous, too. In Section 4 we propose
a new extension of this intensity-based approach to incorporate excess clustering.
This is achieved by incorporating jumps into {F}}>o.

The intensity process {\;}+>0 is interpreted as an instantaneous default rate, mak-
ing the model quite intuitive. The larger the intensity A, the larger is the default
probability over [t,t + dt]. Consequently, a typical realization of {F}};>¢ inherits
time periods with different local default probabilities, resulting from periods with
high or low ;.

For a specification of the model using a basic affine process {\}+>0, the resulting
bivariate lower tail dependence coefficient (4) is zero. The required computation
is very tedious and postponed to the Appendix.

For the approximation P(L; € dx) ~ P(F; € dx) the density of M; is required,
which in the basic affine case can be obtained from the known Laplace transform via
Laplace inversion. Even though this makes the implementation of the model more
involved, it is still more efficient compared to a Monte-Carlo simulation. References
for Laplace inversion algorithms, based on different theoretical inversion formulas,
include [Talbot 1979, Abate et al. 1996, Abate, Valko 2002, Abate, Valko 2004].
We performed several numerical experiments and identified Talbot-type algorithms
to be best suited for the present problem.

13
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2.6 A model based on Lévy subordinators

The model of [Mai, Scherer 2009a] is related to the intensity-based approach, the key
difference being that the (continuous) integrated intensity process is replaced by a (dis-
continuous) jump process. To set up the model, let €j,..., €4 be iid random variables
with unit exponential distribution and let 0 # A = {A;};>0 be an independent (killed)
Lévy subordinator with Laplace exponent W. A brief introduction to Lévy subordinators
is provided in the Appendix. Given the prespecified continuous and strictly increasing
term structure of default probabilities ¢ — p(t), one defines the cumulated hazard func-
tion t +— h(t) := —log (1 —p(t)), and sets the market frailty process as My := Ay /(1)
t > 0. The default times are defined as

The=inf {t>0: My > e} =inf{t>0: U, <1—e M}, k=1,...4d,

where Uy, ..., Uy are iid obtained by U := 1 — exp(—eg) ~ Uni[0,1]. Note that the
expectation of A, evaluated at h(t)/¥(1), is required to match the prespecified term
structure of default probabilities ¢ — p(t), i.e. E[F}] = p(t). Translating it into the
framework of a general CIID-model, this approach corresponds to defining Fy := 1 —
exp(—M;), where My := Ay g1y for t > 0.

Properties of the model

(Sep) A separation of marginals from dependence structure is valid: independently of the
choice of subordinator A and with prespecified term structure ¢ — p(t), it holds
that E[F}] =1 —exp ( — h(t)) = p(t), t > 0.

(Cop) The survival copula of the default times is known to be of Marshall-Olkin kind, see
[Mai, Scherer 2011|. Note that the Marshall-Olkin distribution has already been
proposed for credit-risk modeling by [Giesecke 2003, Lindskog, McNeil 2003|, since
it provides an intuitive interpretation as an exogenous shock model.

(Exc) Multiple defaults at the same time are possible, since the subordinator A can jump
across more than one trigger variable at a time. Hence, the survival copula behind
the multivariate default model (which is an exchangeable Marshall-Olkin copula)
has a singular component on the diagonal and the model supports joint defaults.
This property distinguishes the model from all aforementioned model specifications.

(Fse) Since the common factor is a stochastic process instead of a single random variable,
one obtains a dynamic structure of {F; };>0, and, hence, of the loss process {L; }+>0
as well. For instance, it is possible that in some time periods default probabilities
jump rapidly and in other time periods rather slowly. Unfortunately, the depen-
dence structure behind the default times exhibits the so-called multivariate lack-of
memory property, see e.g. |[Marshall, Olkin 1967, Galambos, Kotz 1978]. Heuris-
tically, the Lévy properties of A, corresponding to the lack-of memory property

14
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of the Marshall-Olkin distribution, force jumps of the market frailty to occur in
time-homogeneous pattern.

(Tdc) The lower tail dependence coefficient of any pair of default times equals \; =
2 — U(2)/¥(1), see [Mai, Scherer 2009a|, which is always positive unless A; = t,
t>0.

(Den) Several classes of Lévy subordinators have known densities. Examples include the
Inverse Gaussian and the Gamma subordinator. Other examples have semi-explicit
densities, e.g., the stable subordinator and several compound Poisson subordina-
tors!0,

In the following sections, two extensions of this modeling approach are presented. These
generalizations aim at combining the desirable properties of the aforementioned mod-
els while preserving their viability. The first generalization combines the models of
[Schonbucher 2002] and [Mai, Scherer 2009a]. The implied dependence structure is of
Archimax kind. The second generalization combines the intensity-based approach with
the model of [Mai, Scherer 2009a|. The result is a so-called triply-stochastic model which
supports default clustering.

3 A new model based on scale mixtures of Marshall-Olkin copulas

It is possible to unify the approaches of [Schonbucher 2002| and [Mai, Scherer 2009a)
into a framework generalizing both. In the language of copula theory, this corresponds
to combining Archimedean with Marshall-Olkin copulas, which represents a family of
copulas termed scale miztures of Marshall-Olkin copulas, see |Li 2009]. It constitutes
a proper subclass of so-called Archimax copulas, as introduced for the bivariate case
in [Capéraa et al. 2000]. Let M > 0 be a random variable with Laplace transform
¢(z) = Elexp(—x M)], z > 0, and let A # 0 be an independent (killed) Lévy subor-
dinator with Laplace exponent W. Independently of (M,A), let e1,...,€eq be iid unit
exponentially distributed. Given the continuous and strictly increasing prespecified
term structure of default probabilities ¢ — p(t), one defines the market frailty process
My == Ayro—10-p))w(r)- The default times are then defined by

Tk::inf{tZO:MtZEk}:inf{tEO:ngl—e_Mt}, k=1,....,d,

where Uy, ..., Uy are iid obtained by Uy, := 1 —exp(—¢x) ~ Uni[0, 1]. In particular, choos-
ing the calendar time A; = ¢, ¢ > 0, the model is equivalent to that of [Schénbucher 2002].

10This construction contains the simple Marshall-Olkin model with one armageddon shock of
[Burtschell et al. 2009] as a special case. Rewriting this example in the present framework, the
subordinator A must be linearly increasing until a single jump to infinity simultaneously destroys all
components.
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Similarly, the choice M = 1 implies the model of [Mai, Scherer 2009a]. Rewriting the
model in the general CIID-setup, this means that

Fri=1—e™ M= Avrp-1a—pwysey, t20.

Suitable choices of (M,A) render the distribution of Fy tractable enough to be useful
for efficient pricing. It is shown below that this class admits several desirable properties
for the modeling of joint defaults. More precisely, it contains the full flexibility of the
Archimedean class, inherits the singular component of the Marshall-Olkin class, combines
the positive dependence coefficients of both classes of copulas, and improves the dynamic
aspects of the original Lévy model. An important property of this model is that the
resulting dependence structure can be identified, it is the exchangeable Archimax family.
The specific form of the survival copula is provided in Theorem 3.1 below, a proof is
given in the Appendix.

Theorem 3.1 (The survival copula of the vector of default times)
The survival copula of the vector (T1, ... ,Td)l 18

~

d
1 . . .
Ol vua) = 2 (G5 D ) (V) ~ 0 - D)) (10)
where uy < ... < uy denotes the ordered list of uy, ..., uq € [0,1].

Properties of the model

(Sep) A separation of marginals from dependence structure is model inherent, since

B[R] =1 —E[E[exp (- A]\?[gp—l(l—p(t))/\ll(l)> (MH

=1 —E[exp(— ]\7.[@71(1 —p(t)))} =p(t), t>0.

(Cop) The default times have a scale mixture of Marshall-Olkin copulas as survival copula.
Statistical properties of this class are investigated, e.g., in [Li 2009]. The specific
form is computed in Theorem 3.1.

(Exc) Multiple defaults are possible, since { F} };+>¢ might have jumps. In the language of
copula theory, the survival copula (10) has a singular component on the diagonal.
More precisely, the events {7} = ... = 7}, k = 2,...,d, are independent of the
realization of M. Hence, their probabilities solely depend on the Lévy subordinator
and can be extracted from a computation in [Mai, Scherer 2009b]:

Y (5)(=1) ()

k=2,...,d.
\Il(k) ) ) )

Plrn=...=m) =
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(Fse) The process {F;}t>o is driven by a mixture of Lévy subordinators. Since M is
independent of the time ¢, no time-inhomogeneity is introduced to {F;}>o.

(Tdc) Tt is not difficult to compute the tail dependence of a pair (7;,7;)" of default times.

Using L’Hospital’s rule, it is given by'! (whenever this limit exists)

L, e S ee)/v)
- to E[F] U(1) o o' (t) '

(Den) Assume that A; admits a density ft(A) for t > 0. It follows from Fubini’s Theorem
that the random variable A;,, ¢t > 0, has the density f;, given by

fi(z) = fMt / @) B € dy), x> 0.

The latter integral can efficiently be computed when M admits a density.

We close this section by giving two specifications of (M, A), which imply viable formulas
for all required quantities.

Example 3.2 (An Archimedean model with Armageddon-scenario)

A new parametric family is obtained when an Archimedean model is combined with a
Lévy subordinator that increases linearly with drift a € [0,1) and might jump to infinity,
i.e. its Lévy measure is determined by v({oo}) = (1 — ), v((0,00)) = 0. Put differently,

Ay =at+ o0 - ]]-{t>E}7 t >0,

where E is an exponential random variable with mean 1/(1 — «). Interpreted from an
economic point of view, this corresponds to an Archimedean-type dependence structure
combined with the positive probability of an Armageddon-scenario killing all remaining
components. The resulting survival copula of default times interpolates between the co-
monotonicity copula and the chosen Archimedean copula and is given by

d
Clui,. .. ug) = @((1 —a) gofl(u(l)) + Zgofl(u(i))), U, ..., uq € [0,1].

The required distributions of Ay;,, t > 0, are found to be:
P(Ay, =00) = IP’(Mt >FE)=1- go(t(l — a)),
P(AMt <uz) :E[ei(lia)Mtﬂ{Mgi}}, x € [0, 00).

HThis result can be validated for the subclasses of Archimedean and Marshall-Olkin survival copulas:
the case M = 1 gives \; = 2 — ¥(2)/¥(1), which agrees with the result obtained in the model of
[Mai, Scherer 2009al. Similarly, the case Ay =t,t > 0, leads to \; = 2 — 2 limy o 50’(2 t)/ap/ (t), which
agrees with the tail dependence parameter in the model of [Schonbucher 2002]. Higher-dimensional
dependence measures can be retrieved from results in [Li 2009].
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Example 3.3 (Gamma scale mixture of exchangeable Cuadras-Augé copulas)
A model specification with explicit distribution of F} is obtained as follows: let A be a
Poisson process with intensity 3 > 0 and M be a T'(1,1/0)-distributed random variable.
In the language of Archimedean copulas, this correponds to Cy, being a Clayton-copula.
It follows that

k - k ()
PAy, =k) = ME[MIC e*BtM} — ﬂ /0 oF e—ﬁtyyéfle,y dy

Kl T T(1/0) k!
_ @Bt 1 \ktg 1
~T(1/0) K (1+Bt> F(’”é)’ ¥ & No.

This choice corresponds to a Gamma scale mizture of exchangeable Cuadras-Augé cop-
ulas, see [Cuadras, Augé 1981] for an introduction to the Cuadras-Augé family. Inter-
preted differently, it corresponds to a generalization of Clayton copulas. The specific form
of the copula is obtained from Theorem 3.1 with p(t) = (1+t)Y/? and ¥ (z) = (1—e®).

4 A new model based on CGMY-type processes

In this section we propose a CIID-model which combines the intensity-based approach
with the approach of [Mai, Scherer 2009a]. Recall that one shortfall of the former class is
the fact that {F}}+>0 is continuous. Consequently, it does not support joint defaults. On
the other side, the model of [Mai, Scherer 2009a/, although supporting jumps of {F}}+>0,
is based on the somewhat unrealistic lack-of-memory properties (inhereted from A being
a Lévy process). The idea of this generalization is to combine both approaches to create
a model that overcomes both shortcomings and produces realistic default pattern over
time. Still, it remains tractable enough to allow for efficient pricing routines without
Monte-Carlo techniques. When empirical corporate defaults are monitored over time,
two stylized facts are revealed (both might equally be realistic for other types of losses):
a) There are time periods with few and time periods with many defaults. In between
those periods, there is typically a gradual change from one regime to the other. b)
Occasionally, there are times with a sudden peak in the number of corporate defaults.
The present model is designed to mimic these properties. To formally define the model,
consider a probability space (2, F,P) supporting the following (independent) objects:

e A basic affine process {\;}+>0 as given by the SDE (6).
e A Lévy subordinator 0 # A = {A+}+>0 with Laplace exponent W.
e A list of iid unit exponential random variables €1, ..., €.

With M; := A , t > 0, the individual default times are defined as

Jo Aeds/ (1)

Tk::inf{tEO:MtZek}, k=1,...,d.
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Due to the definition of 7 via three stochastic objects we term this class of models triply
stochastic. The according CIID-model stems from

Foi=1—¢M 1:Aft t>0.
0

As ds/¥(1)?
The process {M;}+>0 is a time-changed Lévy process in the spirit of [Carr et al. 2003].
The Lévy subordinator {A:}:>0 incorporates jumps into {F}};>0, which corresponds
to positive probabilities of joint defaults and excess clustering. This accounts for the
occurrence of peaks in the number of defaults. The intensity process {\:}+>0 incorpo-
rates time-inhomogeneity: the larger ¢, the larger the probability of defaults over the
next instance of time. The stochastic nature of {\;};>0 overcomes the lack-of-memory
property of the model presented in [Mai, Scherer 2009a]. An important argument for
the use of CGMY-type processes is that their Laplace transform is known in closed
form. Thus, numerical pricing routines are available using Laplace-inversion techniques,
see [Talbot 1979, Abate et al. 1996, Abate, Valko 2002, Abate, Valko 2004|, which are
much more efficient than Monte-Carlo pricing routines. More clearly, one computes

ik =1~ E[B[ew (= Appy, ayow)| [ Aeas]]

= 1—E[efoh ] =1 @0H00% — i), 120, (11)

with functions 8 and « as given in (8) and (9).

This implies that the marginal default probabilities are equal to the ones in the intensity-
based approach. Stated differently, the Lévy subordinator only affects the dependence
structure. In this regard, {A¢}+>0 is an additional source of frailty, which accounts for
excess clustering.

Properties of the model

(Sep) The parameters of {\;}+>0 enter the formula for p(t) = E[F}]. However, the pa-
rameters of the jump process {A¢}:>0 do not affect p(t), see (11). Consequently,
the parameters of the intensity can be calibrated to correlation-insensitive mar-
ket quotes in a first step, and the remaining parameters of the Lévy subordinator
provide additional freedom to calibrate the dependence structure in a second step.
Hence, even though (Sep) is not fully valid, one can still apply a two-step calibra-
tion routine.

(Cop) Unfortunately, it is not straightforward to compute the multivariate distribution
of (11,... ,74) in closed form. This complicates the investigation of the underlying
dependence structure of the default times.

(Exc) Regarding joint default probabilities, the model inherits all desired properties from
the approach of [Mai, Scherer 2009a|, since the events {m; = ... = 7}, for k =
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2,...,d, are independent of the process {\}+>0. In particular, it holds that

Yo (B) (1) tw (i)
U (k) ’

Pln=...=m) = k=2,...,d.

(Fsg) The process {Fi}i>0 is a transformation of a time-changed Lévy subordinator in
the spirit of [Carr et al. 2003]. Intuitively, the Lévy subordinator {A¢}:>0 accounts
for jumps of {F}}+>0. Since it is affected by a random time-change, these jumps
can occur in a time-inhomogeneous pattern: the larger the intensity A;, the more
likely a jump of F} is to occur. This property can be observed in Figure 1, where
one realization of the model is illustrated.
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Figure 1 The graph illustrates one realization of the CGMY-based model with portfolio
size d = 125 over 20 years. The following specifications are made: {A¢}i>0
is a Cox-Ingersoll-Ross process (a basic affine process without jumps) with
Ao = 0.04 and parameters (k,6,0) = (1,0.04,0.25). The Lévy subordinator
is specified by the Laplace exponent ¥(x) = 28 2 > 0, ie. it is a 0.8
stable subordinator. The upper plot illustrates the simulated paths of {\;}+>0
and {h(t)}+>0, where h(t) := f(f As ds. The lower plot illustrates the path of
{M;}+>0 as well as the observed defaults.

One observes how the realization of the intensity {\};>0 affects the path of the
CGMY-process {M;}>0. In particular, when the intensity is high in the first two
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years, around year 10 and around year 17, the CGMY-process accumulates many
small jumps with default clusters being the consequence. Additionally, the plot
visualizes two big jumps of the Lévy subordinator - one around year 7 and one in
the middle of the default cluster around year 17. These are interpreted as excess
default clustering corresponding to strong and surprising economic shocks.

(Tde) Starting from (4), a lengthy computation (related to the one in the Appendix
for the model without subordinator A) involving the specific form of the Laplace
transform identifies the lower tail-dependence coefficient of any two default times as
2 — ¥(2)/¥(1). This result is intuitive: it agrees with the coefficient in the model
of [Mai, Scherer 2009a|. Compared with this model, the deterministic function
t — h(t) is replaced in the present framework by a function of the integrated
(random) intensity. However, the intensity-model alone does not generate tail
dependence, as shown earlier.

(Den) The density of My, t > 0, is not known in closed form. However, it can be re-
covered from its known Laplace transform via numerical Laplace inversion. Using
independence of {A;}+>0 and {A:}+>0, the Laplace transform is given by

o (o0 un)] = (- 22 ['h)

_ eo(w@yw.e)+8(v@)/v).) Yo ps0

)

where v and 3 are given as in (9) and (8). Since the Lévy subordinator is typically
specified in such a way that ¥ has a simple form, the model is as convenient to
work with as the classical intensity-based approach.

5 Extensions of the CIID model

This section illustrates classical and new model extensions, formulated in the spirit of
the unified stochastic framework of Section 2. This allows the financial engineer to easily
adopt extensions from one model class to another. Note, however, that in most cases
the convenient large homogeneous portfolio approximation is lost.

5.1 Hierarchical dependence structures

CIID immediately implies exchangeability, an assumption that one might question from
an economic point of view. For instance, it is reasonable to assume that companies in
the same geographic region (or in the same industry sector) are affected by similar risk
factors. Mathematically speaking, to construct a hierarchical model one partitions all
firms in J groups - given some economic criterion. Then, all firms are affected by a global
factor. In addition to that, specific factors affecting certain subgroups are introduced.
Such a model translates into our framework, however, the CIID structure is given up in
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exchange for a hierarchical model structure. Formally, denote by d1,...,d; the number
of firms in subgroup j. The default time of company 7 from subgroup j is denoted 7;;

and defined by
my=if {t>0:U; <FOY, j=1,....Ji=1,....dj (12)

where F) .. F() are group specific frailty distributions and Uy, ..., Uy ;7 is a list of
iid Uni[0, 1]-distributed random variables. It is reasonable to assume

FU) — function; ({Mt}tZ()a {Mt(j)}t20)7

where {M;}:>0 is a global factor and {Mt(] )}tzo is specific for group j. Within each
group, the resulting dependence structure is again CIID. However, the group specific
dependencies might differ from one group to another, since the group specific factors
need not be iid. Firms from different groups inherit their dependence structure from
the global factor. Note, however, that a large homogeneous portfolio approximation is
not available anymore. To work with the model, one must instead rely on Monte-Carlo
simulations based on construction (12).

Ezample 5.1 (Multi-factor Gaussian model)

A well-known example, used in various commercial portfolio default models, is a Gaussian
dependence structure implied by a global factor M and, independent thereof, mutually
dependent group specific factors My, ..., My. All factors are standard normal random
variables. Then, in the language of Section 2, define with univariate marginal distribution
t—p(t), p, pj €(0,1), and p+p; <1

e~ (p(t) — P M — /pj M,
V3I—p—0pj

The pairwise correlation between two default times of firms from different groups is p.

The correlation between default times from group j is p + p;j. The random vector of de-

fault times has a Gaussian dependence structure with according block-correlation matriz.
Ezxtensions to more factors or other factor distributions are immediate.

R = a( ), t=o.

Ezxzample 5.2 (Nested Archimedean copulas)

An elegant example for a hierarchical extension is a nested Archimedean copula. This
dependence structure is succesfully applied in the context of CDO pricing models in
[Hofert, Scherer (2011)]. Note, however, the very technical notation in this reference.
Formulating models based on nested Archimedean copulas in the present language only
requires a positive random variable M with Laplace transform ¢ as global factor and group
specific independent Lévy subordinators AU) = {Agj)}tzg, j=1,...,J, with Laplace ex-
ponent W;. Then, the frailty distribution for group j is defined as

F9 =1 A O CE0)) I

Consequently, two default times in group j are coupled by an Archimedean survival copula
with generator V;(p(x)), two firms from different groups are coupled by an Archimedean
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survival copula with generator p(x), see [Hering et al. (2010)]. One can show that the
model matches our intuition in the sense that the dependence within each group is at
least as large as the dependence between default times of different groups.

Exzample 5.3 (Hierarchical scale mixture of Marshall-Olkin copulas)

A new example for a hierarchical extension is to start with a Lévy subordinator A =
{A¢}e>0 as global factor. For each group j, an independent positive random variable M,
with Laplace transform ; is considered as additional group-specific factor. Finally, FU)
1s defined as

F9O — 1 o () T

I

5.2 Inhomogeneous marginal distributions

Starting from a CIID model, one possible generalization is to assume conditionally inde-
pendent (but not necessarily identically distributed) default times; in short, inhomoge-
neous marginal distributions. Assuming that the marginal default probabilities are model
input, i.e. the market frailty is a function of the term structure of default probabilities
t — p(t) and some market factor M = {M;}+>¢, this is achieved by defining

T i=1inf {t > 0: U < Ft(k) := function(px(t), M)}, t>0,

where the marginal distribution function E[Ft(k)] = pi(t) is now specific to obligor k.
In this case, it is still possible to exploit the fact that the resulting default times are
conditionally independent. For instance,

d d
P(ry <t1,...., 7 < t0) = E[E[[] Limpeony|M]] =E[[] EP], th,..oita >0
k=1 k=1

One way to obtain the loss distribution in this case is to use the classical recursion
formula, see, e.g., [Andersen et al. 2003, Dobranszky, Schoutens 2009]|, adapted to the
present framework:

gy = (1= FPOY I () + Fmn i >0,0<n<d -1,

where at the end of the iteration, HkM’d(t) denotes the conditional probability (given M)
of having precisely k defaults until time ¢, where 0 < k < d. Note that the iteration must
be initialized with Hg/[’o =1 and H]l/ll’d = 0. The unconditional probability is obtained
by integrating out the market factor. Hence, in order to obtain a viable model, this
distribtion must again be tractable. Moreover, this iterative approach becomes slow and
prone to rounding errors for large portfolio sizes.

An alternative way to compute the loss distribution is available when the copula behind
the default times is known. In this case, it is even possible to compute the probability of
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having 0 < k < d distinct defaults up to time ¢, see, e.g. [Schonbucher 2003, Th. 10.6].
Then, we have to sum over all d choose k subsets to obtain the probability of having
k (not further specified) defaults from d names - which of course, is computationally
only possible for small portfolios. Note that this considerably simplifies for exchangeable
portfolios - the case we just generalized.

5.3 Model fitting across a term structure of maturities

Standardized CDO contracts are traded with maturities 3, 5, 7, and 10 years, respectively,
the most liquid ones being maturities of 5 and 10 years. To price contracts with non-
standard maturities consistent to market data, one has to match model and market prices
across all CDO tranches and across all traded maturities. Since the latter is especially
demanding, most investors fix some maturity and fit their model to the tranches for
this maturity. However, proceeding like this for each maturity leads to different model
specifications - one for each maturity - and it is not clear how to obtain arbitrage-
free prices for other maturities. We now show that the present setup is well-suited to
allow for a bootstrapping-like routine to fit the model across all maturities, starting
with the shortest maturity, and ending with the longest. To describe it, assume a given
tenor structure 0 < 177 < Ty < ... < Tk of maturities for which CDO quotes are
available. The fundamental idea is to partition the frailty distribution into distinct
pieces on the intervals [0,71], (T1,T3], ..., (Tk—-1,Tk| and to iteratively extend the fit
of the CIID-model to the next maturity. Each piece might be interpreted as a local
frailty distribution. Therefore, the model consists of K (stochastically independent)
market frailties. Combining them to an overall stochastic process {F}}+>0, such that the
resulting model is maturity-consistent, is done in Lemma 5.4 below, the proof is given
in the Appendix.

Lemma 5.4 (Bootstrapping CIID structures across different maturities)
Given K stochastically independent market frailties

{Ft[()’Tﬂ }t207 {Ft(Tl’TQ] }t207 R {Ft(TKihTK] }t207

we iteratively define the stochastic process {Fi}i>o as follows: on t € [0,T1], we let
Ft(l) = Ft[o’m. Fork=2,...,K, we then let

k k-1
FM = 1geom gy 0+
T Rt S
k—1 — T
Lire(n, 1 may £7,_, (1 + T_ﬁ)l Fop " ) t € [0, ).
Tk-1

Finally, F; := Ft(K) for t > 0 is an admissible market frailty, i.e. a proper distribution
function for each w € €.
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Lemma 5.4 guarantees the validity of an iterative calibration of a CIID-model to CDO
quotes referring to different maturities 77 < ... < Tk. Recall that the CIID-model
implied pricing formulas corresponding to quotes for maturity 7} involve expectation
values of the form E[f(F};)] for time points ¢t < Tj. With {F;};>0 being specified such
as in Lemma 5.4, it follows that these expectation values only depend on the stochastic
factors {Ft[o’m}tzo, {Ft(Tl’Tﬂ}tZO,...,{Ft(T’“‘l’Tk]}tZO. By iteration, the parameters

of the first k — 1 factors {Ft[O’Tl]}tZO, {Ft(Tl’TQ]}tZO, e {Ft(T’“’Q’T’“’ﬂ}tzo are already
determined. Therefore, it is straightforward to calibrate the parameters of the k-th factor
{Ft(Tk’l’Tk] } +>0 to market quotes of maturity Tj. Depending on the specific forms of the
stochastic factors, the expectation values E[f(F})] can either be computed analytically
or must be solved via Monte Carlo simulations. As an example, consider three different
maturities, say 5, 7, and 10 years, and specify each of the three factors {Ft[o"r)}} 00

{Ft(5’7]} >0 and {Ft(7,10] } 40 like in the Archimedean model of Section 2.4. This means
that we have three independent, absolutely continuous and positive random variables
Mo 5, M(5,7, and M7 10, with corresponding Laplace transforms ¢ 51, ¢[5,7), and @5 1]
To calibrate the model to CDO quotes corresponding to contracts maturing in 5 years,
all involved expectation values are integrals w.r.t. the density of Mg 5. Proceeding with
the next maturity of 7 years, all involved expectation values are double integrals w.r.t.
the product of (independent) densities of My 5 and M5 7. For the third maturity, we
then need to evaluate triple integrals, which is of course much more computationally
burdensome. Nevertheless, conceptually the routine is straightforward and the number
of different maturities considered in real-live is typically amongst 2, ..., 5, rendering this
effort acceptable, in particular because a simultaneous fit of only one market frailty
across different maturities is typically not satisfying.

5.4 Incorporation of a stochastic recovery rate

Although common practice, the assumption of constant recoveries is unsatisfactory, since
empirical observations suggest a negative association between default intensities and
recovery rates, see e.g. [Hocht (2010)]. However, there is a simple approach to incorporate
stochastic recovery rates into a CIID framework without giving up its analytical viability.
Assuming identical recovery rates for all issuers, one may define the global stochastic
recovery rate as a function of the market frailty in such a way that the aforementioned
negative dependence is guaranteed. Giving an example, in the Gaussian copula model
such an approach is introduced by [Andersen, Sidenius (2004,2005)|. Recalling that the
market frailty in the Gaussian CIID-model is given by

o' (p(t) — \/EM) -
vi—p )R
they propose to define the stochastic recovery rate as

w+bM
i)

F, ;:@(

R = Rypu (1—@(
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for parameters p,b € R, Rz € [0,1], and o0 > 0. Generally speaking, whenever the
market frailty process {Fi}:>0 is a function of a random variable (or vector) M, i.e.
F, .= f(M,t), defining R := g(M) as a function of M implies that uniformly in ¢ > 0
we have almost surely

(1-R) Ly — (1—g(M)) f(M,t), asd— oco.

Hence, the large homogeneous portfolio approximation is still possible and the limiting
variable is again a function of M, and, thus, typically convenient to handle. To achieve
the desired negative dependence between recovery rates and default intensities, the ap-
propriate choice of g is essential. One must guarantee that f(M,t) is increasing in M
while g(M) is decreasing in M, or vice versa. This reflects the fact that increasing default
likelihood corresponds to decreasing recovery rates, and vice versa. This technique is in
principle applicable to the models in Sections 2.3 and 2.4. For the more sophisticated
model specifications based on a stochastic process {M;}:>o rather than a random vari-
able M, it is a more delicate issue to incorporate stochastic recovery rates in a reasonable
way. This is subject of further research.

6 Conclusion

A unified approach for CIID portfolio default models was presented. Desirable stochastic
properties of these models were introduced in an axiomatic manner and discussed from
an economic perspective, mostly with a view on credit risk. State-of-the-art models that
fit into the present context were discussed and compared with respect to these properties.
Two new models, extending several well-known models, were introduced. The first one
was shown to unify the approaches of [Schénbucher 2002] and [Mai, Scherer 2009a]. The
resulting implied copula is of Archimax type. The second ansatz combines a classical
intensity approach with a Lévy based approach to allow for excess clustering and time-
inhomogeneity. In both cases one could derive the Laplace transform of the required
underlying frailty distribution in closed form. Finally, several model generalizations are
discussed.

Appendix

Lévy subordinators

A Lévy subordinator A = {A;};>0 is a non-decreasing stochastic process. It starts
at zero, is stochastically continuous, and has stationary and independent increments.
Standard textbooks on this theory comprise [Bertoin 1996, Bertoin 1999, Sato 1999,
Schoutens 2003, Applebaum 2004]. A Lévy subordinator is uniquely characterized by
its Laplace transforms, which admit the form

E[e_x/ﬂ =e Y@ vr>0,t>0,
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for a function ¥ : [0,00) — [0,00) which has a completely monotone derivative and
satisfies U(0) = 0, see [Feller 1966, p. 450|. The function V is called Laplace exponent of
A and is strictly increasing unless A; = 0.

Copulas

A (d-dimensional) copula C is the restriction on [0,1]¢ of the distribution function of
a random vector (Uy,...,Uy)’, where each Uy, is Uni[0, 1]-distributed. If (7q,... . 7a)
is an arbitrary random vector with continuous marginal distribution functions ¢t +—
Fi(t) := P(m, <t), k =1,...,d, then the distribution function of the random vector

(F1 (1), ... ,Fd(Td))/ is a copula, called the copula of (71,... ,Td)/. Similarly, the distri-
bution function of the random vector (1 — Fy(ry),...,1— Fd(Td))’ is a copula, called the
survival copula of (11,... ,Td)/. The investigation of the distribution of (71, ... ,Td)/ can
be split into two substudies (marginals and dependence structure) by virtue of Sklar’s

Theorem, see [Sklar 1959]: if C' (resp. C') denotes the copula (resp. survival copula) of
(T1,...,7q4) , then it holds true that

]P(Tl <ti,...,7d Std) :C(Fl(tl),...,Fd(td)), t1,...,tg € R,
P(r1 > t1,...,7a > ta) = C(1 = Fi(t1),...,1 — Fy(ta)), ti,...,tq €R.

In the present context such a separation of marginals and dependence structure is useful,
since the marginal distributions of default times are often given a priori. In particular,
the model for the marginals and the copula are typically different, which necessitates
an intrinsic study of the underlying copula. Depending on the specific distribution,
sometimes it is easier to explore the copula, sometimes it is easier to explore the survival
copula. Considering specific families, an elliptical copula corresponds to the respective
elliptical distribution by standardizing its marginals. Elliptical distributions, in turn, are
defined as linear transformations of spherical distributions, see [Fang et al. 1989, p. 31].
Prominent members of this class include the Gaussian copula and the Student t-copula.
A copula C, is called Archimedean with generator ¢ if it has the functional form

Co(ur,...,uq) = go(ga_l(ul) —|—...—|—<p_1(ud)), ug,...,uq € [0,1].

It is shown in [Marshall, Olkin 1988]| that if p(x) := E[exp(—x M)], z > 0, is the Laplace
transform of a positive random variable M, the random vector (e; /M, ..., eq/M)" has sur-
vival copula C,,, where €1, ..., €7 are iid unit exponential, independent of M. This means
that Archimedean copulas occur as mixture distributions of iid exponential random vari-
ables whose parameter M is randomly chosen. The so-called Marshall-Olkin distribution
is introduced in [Marshall, Olkin 1967] as the unique multivariate extension of the ex-
ponential distribution with lack-of-memory property. Additional references include, e.g.,
[Barlow, Proschan 1975, Galambos, Kotz 1978, Mai, Scherer 2011, Mai, Scherer 2009b].
The motivation behind this distribution is an exogenous shock model: in dimension
d > 2, consider 2% — 1 independent random variables e;, § # I C {1,...,d}, where
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€1 ~ Exp()\7) for parameters Aq,...,A\q > 0. The random vector (r1,.. ., Td)/, defined
by

T ::Iggrll,i?,d}{EI‘kej}’ k=1,...,d,

is said to have the exchangeable Marshall-Olkin distribution. Its survival copula has the

form
L S
A sz;()l (dzl) )‘7«+1
C(ul,...,ud):Hu(k) ;o Ul,...,uq € [0,1], (13)
k=1
where w1y < ... < u denotes the ordered list of s, ..., uq, see [Mai, Scherer 2011].
An important fact for our purpose is the following, see [Mai, Scherer 2011]: if A is a
Lévy subordinator with Laplace exponent W and €1, ..., €4 are iid unit exponential and

independent of A, then the random vector (r1,...,74) defined by
T =inf{t >0 : Ay > e}, k=1,...,d,

has the exchangeable Marshall-Olkin distribution with parameters given by

k-1

M\ ;:Z%(k;l) (—1)(¥(d—k+i+1)—V(d—-k+1i), k=1,...,d

In particular, its survival copula is given as in (13) and simplifies to

o W(k)—W(k—-1))/¥(1
C(ul,...,ud):Hu((k)( i ))/ (), ul,...,ude[O,l].
k=1

Proof of Lemma 2.2

The first statement follows immediately from the Theorem of Glivenko-Cantelli, see
[Loeéve 1977, p. 20]: conditioned on {F;}i>0, {Lt}i>0 is precisely the empirical distribu-
tion function of the law {F}};>0 based on d samples. Hence,

P( lim sup |F — Le| = 0) = E[P( lim sup|F; — Li| = 0| {F}iz0)] =B = 1.

d—oo >0 d—00 >0
For the second statement, immediate computations show that

E[r}] = SEIF) + B[R], E[LF] = E[F,

which implies that

— F)* dt = w2 d—oo
AﬂM@ Ryt dﬁﬂ@m]EmDﬁ 0.

The claim is established. O
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Proof of zero tail dependence in the model of Section 2.5

The first step is to compute for 3 and «, given in (8) and (9), that

—

/ . d *) / . d (**)
o (z,0):=lim pa(z,t) =0, f(2,0):=lim 7 5(z,1) z, x>0

Both (x) and (%) are tedious computations that become simpler with the identities

o)+ da) =~ 2L o) ) = 2
B o2 b(x) B
c(x) —d(x) = % @) +d@) x.

Then, using formula (7), one computes with L’Hospital’s rule that!?
E[F7]
~tlo E[F]  to

a'(2,0)+ 82,00 X0

=T AL AL

e(2,6)+8(2,t) X0 _ ca(L,t)+B(1,t) Ao
1 — e(L,t)+8(1,t) Ao

Proof of Theorem 3.1

At first, observe that for arbitrary ¢1,...,t4 € [0,00) with ordered list (1) < ... < (g
and t(g) := 0 it holds that

d d

— d
Dd+1—id) (A = Ay y) =D (d+1—i) Ay, =D (d—i) Ay, =D Ay
=0 i=1

i=1 i=1 i

fay

~

Since A is a Lévy process, the vector of increments (At(d) — At(d_l), N At(o))
has independent components and At(i) — Ay is equal in distribution to At(i)_t(i—l)'
Consequently

(i-1)

d d
E [e_zlii:lAti] = H]E [e_(dﬂ_z)A(t(z')*t(z;l))} = He_(t(i)_t(ifl))\p(d'i‘l_i).
i=1 i=1

12The above argument makes use of the explicit form of the Laplace transform of an integrated basic
affine intensity. If the intensity {A\:}:>0 is specified differently, one might end up with positive tail
dependence. Giving one example, assume that \; := M for a positive random variable M with
Laplace transform ¢, i.e. M; = M t, t > 0. The resulting dependence structure is of Archimedean
kind and there are choices for M that imply positive tail dependence. A related observation is that
for A\ :== M 2 (7" (1 — p(t))), the model of [Schénbucher 2002] is a special case of the intensity
approach.
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Secondly, compute the joint survival function (using the above identity)

G(tl,.. . ,td) = ]P)(Tl >t1,...,Tqd > td)
=P(e1 > Az pm1(1p(e)) w2 €4 > At o1 1p(ea)) /(1)

d
=E |exp ( — Z; AM«pl(l—p(ti))/‘I’(l)>]

i d

=E |E |exp ( - z; AMso—l(l—p@i))/wl)) ‘M”

—]E- M d\Ildl ) (o™t — p(t 11— p(t

- _exp(—w; (d+1 =) (9~ (1= pltg) = 971 = plti 1))
= ¢( (11 (d+1 =) (9~ (1= plt) — ¢~ (1= p(ti 1))

= (11

The last step involves expanding the sum of differences to two sums and shifting the
summation index in the second sum by one. The resulting sums can then be recombined
using ¥(0) = 0.

d
Z
i
521 = ) (V) = Wl - n))-

Thirdly, for the margins one obtains using similar arguments
]P)(’Ti >t) :]P)(EZ >AM(,O_1(17p(t))/\I/(1)) = 1—p(t), 1= 1,...,d, t > 0.

Thus, 7; is distributed according to p(t). Finally, using the survival analogue of Sklar’s
Theorem, see [McNeil et al. 2005, p. 195|, there exists a unique copula C, called the
survival copula of (71, ...,74), which satisfies

G(tr,...,tg) = C(1—p(t1),..., 1 — p(tq)).

Testing the copula claimed in (10), one finds
(j(l—P(tl)a---J p(ta)) ( ZSD P(t(as1— 1)))(\11(2’)—\1'(2’—1))).
Thus, the claim is established by the uniqueness of the survival copula. O

Proof of Lemma 5.4

The claimed composition of different distribution functions to a new one is based on
an elementary decomposition of a distribution function. Considering only two intervals
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[0,71] and (T, T3], it is easy to verify for ¢ € [0, T»] that

P(r <t) = Ly P(r < 6)+
P(T > Tl)

Live(ry )y P(r < Th) (1 + P(r <T1)

P(r <t|r> Tl)).

The crucial observation from this elementary computation is that having determined the
distribution p; (¢) := P(7 < t) on [0,T}] already, to determine the distribution on [0, 73]
it suffices to determine pa(u) :=P(r < u+Ty |7 > T1) for u € (0,75 — T1]. However, the
function ps is a proper distribution function on [0,00). Hence, starting with two given
distribution functions p1, p2, the claimed composition of those yields a proper distribution
function with the interpretation that po is the conditional distribution in case of survival
until time 77. The general case K > 2 is now easily obtained by iterating the above
argument.
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