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This paper analyses the effect of household socio-economic position on the nutritional condition of 

Indian women, using data from the 2005-06 National Family Health Surveys. India along with other 

transition countries has experienced a steady economic growth since the last decade. Yet, there is little 

improvement in nutritional and wellbeing indicators particularly of women and children. There is clearly 

evidence of a nutrition transition in India, which is accompanied by an overall increase in average Body 

Mass Index leading to obesity, however, simultaneously with persistent high levels of under nutrition in 

large segments of the Indian society. The reasons behind this double burden have not been investigated 

systematically. On the other hand, the existing public health policies in India have not worked effectively in 

targeting nutritionally deprived population groups. The analysis considered Body Mass Index (BMI) as an 

outcome indicator of nutritional status, treated as continuous variable and its probability distribution is 

estimated by a Gaussian mixture model. The result is a mixture of Gaussian distributions, one for each 

cluster, with the mean being explained by a set of covariates of the socio economic status of the individuals.  
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Introduction 

 

The recent economic growth in India has unprecedented effect on the living conditions and 

nutritional outcomes of its population. Within the nutritional transition framework, the pattern evolving in 

most transition economies is an increase in the number of overweight individuals, first among individuals 

belonging to higher socioeconomic status and progressively expanding to lower strata, while groups of 

individuals remain in a sub-nutritional condition. This dualism of the nutrition status is a new challenge for 

the design and implementation of public health policies. The population groups affected by under nutrition 

and obesity should be the focus of public health policies. Identifying the variations in nutritional outcomes 

among different socioeconomic groups is critical for designing effective policies and implementing targeted 

interventions. The most vulnerable population group is women of reproductive ages who suffer from a 

range of nutritional disorders related to pregnancy and reproduction as well as those resulting from the 

physical burden of work within and outside households and childcare. There is increasing evidence that 

undernutrition and overnutrition of mothers tend to have negative influence on their own health and that of 

children, including risks of obesity, diabetes and cardiovascular disease.   

 

This paper analyses the effect of household socio-economic position on the nutritional condition of 

Indian women, using data from the third round of the National Family Health Surveys (NFHS-3) conducted 

during 2005-06. NFHS-3 collected a wide range of demographic and socioeconomic data along with 

specific health status and health care related to children and women of reproductive ages. The household 

schedule included questions on various dimensions of household economic conditions such as durable, 

assets, livestock and landholdings – which allows to estimate the current status of household wealth. In 

addition, the survey measured weight and height of individual women within the household which allows 

to estimate the individual Body Mass Index (BMI=kg/m
2
). The BMI is an indicator for the nutritional 

status: underweight (BMI below 18.5), overweight (above 25 and below 30) and obesity (above 30). The 

occupation of the respondent and level of education were included as explanatory variables and indicators 

of socioeconomic status within the regression framework. Other additional control variables considered 

include age, region, religion, caste and the number of children. 

 

Finite mixture model 

 

The finite mixture model assumes that the sample of observations derives from a population with a 

finite number (�) of groups/components, ��, � = 1. . . , � of unknown proportions: 

	
��; ��, �� = � ��	�
��; ��, ��
�

���
, 

where the proportions or weights of each component, ��, correspond to the a priori probability of an 

observation belonging to component s, with: ∑ ��	�
������ ; ��, �� = 1, �� > 0, � = 1, . . . , �, and 

	�
��; �� , �� is the conditional distribution within latent class �. In our case, we assume that given that the 

individual �  belongs to component � , each observation is characterized by the Gaussian density 
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probability function: 

	�
��; ��, ��, ���� = 1
�2����

 !" #− 1
2 %�� − &���� '�( 

in which &�� = ���� and ��� are the mean and variance, respectively. The vector �� contains one for the 

intercept and the covariates for observation �, and )*� measures the impact of the explanatory variable + 
on the �� in component �, ),� is the constant in component �. 

The estimation of the parameters � = 
-, �, ���, by the maximum likelihood method, results in 

maximizing of the likelihood function: 
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An elegant way to obtain the estimates of finite mixture models is by using the EM algorithm. The 

EM algorithm consists in an iterative process, which can be resumed in two steps: step E (Expectation step) 

and step M (Maximization step). Given its properties, such as simplicity, easy implantation and numeric 

stability (Dias and Wedel, 2004), it is the most frequently used process for the maximization of the 

maximum likelihood in mixture models. 

This algorithm works in an augmented space, in which a latent variable (1��) is introduced, indicating 

whether individual � belongs to the latent component �. The variable assumes the value 1 if the individual 

� belongs to component � and the value 0, if not. Admitting that 2� = 
1��, . . . , 1��� are independent, 

identically distributed and follow a multinomial distribution with probability - = 
��, . . . . , ��� the log-

likelihood for the complete data is:  

+3.4 = ∑ ∑ 1�� ln 	� 
��; ��, ��, ��������0��� + ∑ ∑ 1��ln ������0��� .   

Step E in the EM algorithm consists in the calculation of 8
ln .4�, the expected value of the function 

ln .4, in order to the distribution of the non-observed variable, 1��, conditioned on the observed variables 

�� and �� and on the estimate of the parameters �. The value of 8
ln .4� is obtained by substituting the 

1�� by its expected value: 

8
1��|�� , ��, �� = :
1�� = 1|�� , �� , � � = π< 	� 
��; ��, ��, ����
∑ �=	=
��; ��, �=, �=���=��

, 
which is equivalent to the a posteriori probability denoted by >��, that is, the probability of an individual � 
belonging to component � conditional on the observed data. 

On the other hand, the M step of the algorithm consists in maximizing the complete log-likelihood, in 

order to the parameters �, using the Newton-Raphson algorithm. 

Once the algorithm has converged, parameter estimates (�?) characterize the mixture components; 

while a posterior probability estimates (>@A<) identify the best probabilistic partition of the population. The 

classification of each individual into the � components is based on the highest probability of an individual 

belonging to a certain mixture component. 

The choice of the adequate number of components (�) is usually based on the utilization of 

criteria/statistics of the theory of information. The basic principle of these criteria is parsimony, which 

results in a trade-off between the complexity of the model (measured by the number of parameters) and its 

fit. Of the many existing criteria (measured by the maximum log-likelihood value), the BIC – Bayesian 
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Information Criterion (Schwarz, 1978) is the most popular in mixture modeling. It selects the number of 

components based on the minimization of the following criterion: 

B� = −2ℓ�
�?; D, �� + E�ln 
3�, 
in which ℓ�
. �, E� and 3 correspond to the log-likelihood function, the number of parameter of the 

model, and the sample size, respectively. Lower values of BIC means more parsimonious models. 

 

 

Results 

 

This section presents the main results of this research. First, we analysis the shape of the BMI empirical 

distribution. As can be seen in Figure 1, it is strongly skewed that invalidates the use of Gaussian 

(symmetric) models.   

 

Figure 1. Empirical distribution of the BMI 

variable  

 

As mixture distributions can approximate any distribution, we start our modeling without covariates (only 

means or intercepts ),� in the linear component of the model). The best model (minimum BIC) is reached 

with five components (� = 5), with LL = -191884, BIC = 383923.3, and 14 parameters (4 proportions, 5 

means and 5 variances). Figure 2 depicts the estimated Gaussian components (dashed lines) and the 

mixture distribution that approximates the empirical distribution in Figure 1. We observe that different 

components retrieve different parts of the tail of the distribution. Moreover, one observes that components 

with increased mean tend to have larger variances. Thus, this first mixture shows that this approach can 

retrieve the density distribution of the dependent variable. 
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Figure 2. BMI distribution as a mixture of Gaussian distributions 

 

 

A second model – a mixture regression model – relates the dependent (BMI) with the wealth 

index and age. The best BIC solution contains 6 components (LL = 180612; Npar = 47). Figure 2 sh

ows the surface of the relation between the estimated expected BMI as function of wealth index and 

a ge :  8
�G|�G, �?�H = ∑ ��I&G�I���� . In this mixture regression we include the quadratic effects and the 

interaction between wealth index and age in the linear component of the model. One observes that obesity 

increases strongly with wealth index and less pronounced with age. Undernourishment is particular 

expected for lower wealth index values and young ages.  

 

Figure 3. BMI expected value from a mixture of Gaussian regressions 
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Our main goal is to understand the impact of the socio economic dimension on the BMI score. We 

performed a third mixture analysis controlling the variables Wealth Index (household), Age of respondent, 

Region, Religion, Caste, Number of children, Educational level of the respondent, and Occupation of 

respondent. The mixture of Gaussian regression that best fits the data (BIC) contains four latent classe

s (LL = -181138.96; Npar = 127). Table 1 reports the estimates of the model.  

 

Table 1. Mixture regression estimates 

Latent classes Wald p-value

1 2 3 4

Intercept 17.908 *** 18.837 *** 17.743 *** 21.705 *** 83284.3 0.000

Wealth Index (household)

Poorest - - - - 3312.4 0.000

Poorer 0.037  0.736 *** -0.108  0.665  

Middle 0.558 *** 1.631 *** -0.118  2.378 ***

Richer 1.536 *** 3.245 *** 0.030  4.336 ***

Richest 3.452 *** 5.489 *** 0.951 *** 7.338 ***

Age of respondent

15-24 - - - - 1322.1 0.000

25-34 0.393 *** 1.487 *** -0.133 * 2.140 ***

35-49 1.207 *** 2.868 *** -0.154 * 3.835 ***

Region

North - - - - 800.3 0.000

Central -0.102  -0.055  -0.151 * -0.749 **

East -0.211 ** -0.493 *** -0.205 ** -1.816 ***

Northeast 0.258 ** -0.162  0.441 *** -2.276 ***

West -0.435 *** -0.358 *** -0.764 *** -0.291  

South 0.323 *** 0.845 *** -0.245 *** 1.133 ***

Religion

Hindu - - - - 446.7 0.000

Muslim 0.264 *** 0.828 *** -0.179 ** 1.302 ***

Christian 0.728 *** 0.466 ** 0.594 *** 0.479  

Other 0.988 *** 1.226 *** 0.467 *** 2.459 ***

Caste

General - - - - 154.9 0.000

Sched caste -0.266 *** -0.315 *** -0.288 *** -0.403  

Sched tribe -0.228 * -0.924 *** 0.168  -1.314 ***

OBC -0.067  -0.322 *** -0.089  -0.598 **

Other/dk -0.171  -0.228 0.144  -1.578 ***

Number of children

4+ - - - - 44.3 0.000

3 -0.009  0.113 0.203 *** -0.002

2 0.135 * 0.129 0.116  0.166

None or one -0.110  0.063 -0.021  0.281

Level of education of respondent

No education - - - - 159.9 0.000

Primary 0.248 *** 0.243 ** 0.062  0.417  

Secondary 0.381 *** 0.467 *** -0.014  0.323  

Higher 0.988 *** 0.572 *** 0.386 *** 0.810 *

Occupation of respondent

Not working - - - - 366.5 0.000

Agricultural -0.276 *** -0.868 *** 0.275 *** -1.944 ***

Skilled,unskilled manual -0.262 *** -0.562 *** -0.027  -1.146 ***

Services 0.200  0.290  0.055  0.092  

Clerical, sales 0.345 ** 0.384 * 0.650 *** 0.187  

Professional, tech, managerial 0.328 * 0.075  0.597 *** -1.350 *

Variance 3.412 6.404 2.663 18.292

Latent class sizes 0.368 0.334 0.219 0.080
 

 

The richest category of wealth index has the greatest effect on the BMI for all the classes, especially on the 

fourth class with the greatest BMI average. For this class, richest individuals have a BMI 7 points higher 

than the individual in the reference category. The BMI grows as the richness of the individuals increases for 

all classes. The level of education has a similar pattern of effects on BMI, however with low coefficients. 

Higher levels of educations have the greatest effect on BMI. 
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The results also suggest that living in North or South regions has a positive effect on BMI. In general, the 

coefficients for the other four regions have negative signals.  

Older women have higher BMI in all classes except the third class. For the third class as individuals grow 

older their BMI decreases. This class presents the lowest average BMI. 

The lifestyle has effects on BMI because it affects the balance between the dietary energy intake and the 

labor demands of energy. Manual labor requires more energy expenditure and so the coefficients of the 

individuals employed in agriculture and manual labor exhibit negative significant coefficients in almost all 

the classes.  

Table 2. Latent class profiling 

Latent classes Aggregate

1 2 3 4

Class size 0.368 0.334 0.219 0.080

BMI (mean) 20.364 23.620 17.928 27.165 21.538

Wealth Index (household)

Poorest 0.127 0.116 0.136 0.106 0.124

Poorer 0.151 0.144 0.160 0.137 0.150

Middle 0.191 0.190 0.196 0.188 0.192

Richer 0.232 0.239 0.229 0.244 0.235

Richest 0.299 0.311 0.278 0.326 0.301

Age of respondent

15-24 0.149 0.134 0.173 0.121 0.147

25-34 0.400 0.392 0.413 0.384 0.399

35-49 0.451 0.474 0.414 0.496 0.454

Region

North 0.193 0.194 0.194 0.197 0.194

Central 0.189 0.185 0.199 0.182 0.189

East 0.158 0.157 0.158 0.152 0.157

Northeast 0.135 0.128 0.140 0.124 0.133

West 0.131 0.132 0.130 0.137 0.131

South 0.193 0.204 0.180 0.209 0.195

Religion

Hindu 0.763 0.760 0.765 0.758 0.762

Muslim 0.124 0.130 0.120 0.135 0.126

Christian 0.057 0.055 0.061 0.053 0.057

Other 0.055 0.055 0.054 0.054 0.055

Caste

General 0.349 0.357 0.334 0.370 0.350

Sched caste 0.168 0.167 0.171 0.166 0.168

Sched tribe 0.110 0.101 0.121 0.090 0.108

OBC 0.329 0.329 0.334 0.329 0.330

Other/dk 0.044 0.046 0.041 0.046 0.044

Place of residence

Countryside 0.582 0.542 0.612 0.490 0.568

Town 0.152 0.157 0.144 0.160 0.153

Small city 0.072 0.079 0.069 0.083 0.075

Capital, Large city 0.194 0.223 0.175 0.267 0.205
 

The first and second latent classes represent about 70% of the population and they both have an 

average BMI inside the cut-offs usually adopted for a balanced nutritional status (18<BMI<25). The third 

cluster represents about 22% of individuals with the lowest average BMI of 17.9 kg/m
2
. Individuals 

residing in countryside have the greatest probability of belonging to this cluster. Also, there is a slight 

predominance of individuals with age between 15 and 24 years old if we compare with the other clusters. 
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The fourth cluster represents just 8% of total individuals. With the highest average BMI of about 27 

kg/m
2
, the latent class includes those with overweight. The individuals of this cluster are older than the 

population aggregate and live more in large cities than the individuals of the other classes. 

 

Conclusion 

 

Our findings shed light on the explanation of overweight and underweight based on socio economic status. 

Wealth, age and education and absence of a working activity have negative effects on health through the 

increase of the BMI. This especially true for individuals of the fourth class which present already higher 

average BMI than the other classes. Living in south and north regions is an additional risk factor for obesity. 

 

The class with lowest average BMI presents a different pattern of effects. Age, belong to a scheduled cast 

and not working are factors that affect negatively the average BMI of the class, and represent a 

deterioration of health conditions. 

 

The consequences of these findings confirm previous results which suggest an increase of BMI for the 

richest individuals while the individuals with low income remain with a low average BMI. It was possible 

to identify regions of higher risk of obesity and under nutrition. Lifestyles also have effect on BMI and 

sedentary life is a risk factor. Accordingly, these results suggest that not working is a risk factor for both 

individuals with lower BMI and also for those with higher BMI.  
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