Int. Statistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session STS072) p.3787

Lévy processes and the financial crisis: can we
design a more effective deposit protection?
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Abstract

Lévy processes have been applied in various financial settings to
overcome the main shortcomings of the Gaussian distribution, since
they allow for fat tails and jumps. In the present paper we propose to
use Levy processes to simulate the distribution of losses deriving from
bank failures. The application of Levy processes is expected to pro-
vide successful results to this aim since bank failures are unexpected,
rare events. We propose to use the simulated distribution of losses
to design an effective Deposit Guarantee Schemes (DGSs). DGSs are
financial institutions whose main aim is to provide a safety net for de-
positors. If a credit institution fails, depositors will be able to recover
their bank deposits up to a certain limit. During the recent global
financial crisis, DGSs were brought at the centre of the political and
financial debate, especially due to the fact that the DGSs in the Eu-
ropean Union Member States resulted in most of the cases incapable
to react to the financial crisis, especially due to the lack of funds set
aside. By simulating banks’ default and the corresponding losses, our
model allows defining a target level for the funds to be collected be
the scheme in order to promptly and effectively respond to financial
crisis and protect the citizens. The proposed approach is applied to a
sample of Italian banks.
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1 Introduction

Deposit Guarantee Schemes (DGSs hereinafter) are financial institutions set
up with the main purpose of reimbursing depositors whenever their bank
goes into default. If a credit institution fails, a DGS intervenes and pays
back the bank deposits up a certain amount, called level of coverage. It is
clear that, in order to work properly, the DGS must have at its disposal
an adequate amount to cover potential losses. This amount is usually set
aside by collecting contributions from banks. It is quite well-known that
the existence of these institutions leads to some benefits: from depositors’
point of view, DGSs protect a part of their wealth from bank failures and
avoid bank runs; from banking stability perspective, DGSs contribute to
strengthen the confidence in the financial sector, thus preventing bank runs,
and to create a level playing field, thus avoiding competitive distortions (see
for example Garcia (1999), Cariboni et al. (2010) and European Commission
(2011)).

These schemes are in place in many countries all over the world, like in
the US, Canada, Russia, and Australia (Laeven (2002) summarizes the main
features of the existing DGSs in the world). In the European Union, Direc-
tive 94/19/EC (European Parliament and Council (1994)) obliged Member
States to ensure the existence of at least one or more schemes on their ter-
ritory, but required only minimum harmonization of rules across DGSs (for
example, it required DGSs to set the minimum level of coverage at €20, 000).
The Directive left a large degree of discretion to the schemes, especially in
relation to the financing mechanisms. The levels of coverage in place among
EU DGSs ranged from around €14,000 in Latvia to around €103,000 in
Italy; also the way DGSs financed themselves has been very heterogeneous.
Some DGSs collected contributions from their members on a regular ba-
sis, while others called for contributions only in case of bank’s failure (see
Cariboni et al. (2008) and Cariboni et al. (2010)).

In 2005-2006 the European Commission launched a review process of Di-
rective 94/19/EC, the conclusions of which were disseminated via a formal
Communication in 2006 (European Commission (2006)). The Commission
highlighted a number of short-term improvements to the existing arrange-
ments, to be adopted via self regulatory agreements and without changing
the legislation in place. The improvements included fine tuning topping-up
arrangements’, shortening the time it takes for schemes to pay out to depos-
itors after a bank’s failure and developing exchange of information between
schemes.

The 2008 global financial crisis brought DGSs at the centre of the polit-
ical and financial debate. In order to restore confidence in the financial sec-

YThey are arrangements where a bank branch in another Member State voluntarily
joins the host country’s DGS.
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tor, in October, 2008, the Commission proposed urgent legislative changes
of the Directive (European Commission (2008)). The Amending Directive,
adopted in March 2009 (European Parliament and Council (2009)), com-
pelled EU schemes to increase the level of coverage from €20, 000 to €50, 000
first and to €100,000 by December, 2010. Moreover, it obliged European
DGSs to reduce the maximum time necessary to repay depositors from 3
months to 20 working days and to discontinue coinsurance?. The Amending
Directive was, however, only an emergency measure aiming at maintaining
depositors’ confidence in the financial system.

One of the consequences of the financial crisis was that it emphasized
the necessity of an in-depth revision of the whole Directive on DGSs. As a
result, in July, 2010, the Commission adopted a legislative proposal on DGSs
(European Commission (2010)). This proposal would aim at simplifying and
harmonizing many aspects of the functioning left to the discretion of DGSs
up to now. The aspects mentioned in the proposal which will be more
relevant for the present work are the following:

e Simplification and harmonization of the scope of coverage. Only de-
posits by customers and by non-financial corporations would be eligible
for protection in all DGSs®.

e Harmonization of the financing mechanisms of DGSs. All DGSs would
have to move to an ex-ante financing system, where financial resources
are collected from member banks in advance on a regular basis.

e Choice of the target level for the funds of DGSs. The target level for
the funds would be fixed equal to 2% of the amount of deposits eligible
for protection. The transition period to let DGSs reach the target level
would be equal to 10 years.

The academic literature on DGSs can be divided into two groups, de-
pending on the way the default event is defined (the paper by De Lisa et al.
(2010) provides a comprehensive summary of the existing literature). Few
studies (Duffie et al. (2003) among the others) adopt reduced-form mod-
els to estimate fair market premiums, while most studies (Bennett (2002),
Kuritzkes et al. (2002) and Sironi and Zazzara (2004) for example) esti-
mate banks’ default probabilities from market data and relying on struc-
tural credit risk models. The new model, recently developed by De Lisa
et al. (2010), proposes a novel approach to estimate loss distributions which
explicitly considers the link between deposit insurance and the regulatory
framework for capital requirements introduced by Basel II.

*Directive 94/19/EC allowed DGSs an optional coinsurance of up to 10%, i.e. a certain
percentage of losses was borne by depositors.

3 According to the current practices, DGSs may provide that certain classes of deposits,
detailed in Annex I of Directive 94/19/EC (European Parliament and Council (1994)),
shall be excluded from protection.
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The main aim of this paper is to design an effective DGS. In particular
our model allows defining a target level for the funds to be collected by the
scheme in order to promptly and effectively respond to financial crisis and
protect the citizens. To achieve this goal we simulate banks’ defaults and
the corresponding losses potentially hitting the system. This approach is
applied to a sample of Italian banks.

Following a well recognized approach (Bennett (2002), Kuritzkes et al.
(2002) and Sironi and Zazzara (2004) among the others), funds can be re-
garded of as portfolios of counterparty risks. These portfolios consist of
individual exposures to insured banks, each of which has a small but non-
zero probability of causing a loss to the fund. We simulate the empirical
loss distribution of the DGS to investigate whether the proposed target size
is adequate to face potential banks’ failures.

The procedure adopted to simulate the loss distributions relies on the
classical credit risk techniques (see Bluhm et al. (2003), Schénbucher (2003)
and Schoutens and Cariboni (2009)): defaults occur if the bank’s asset value
falls below a threshold, asset-value processes follow a generic one-factor
model and default times are exponentially distributed. A novel approach
is proposed to model asset-value processes and to estimate banks’ default
probabilities. Asset-value processes are assumed to follow a generic one-
factor Lévy process and in particular the one-factor Gaussian model and
the one-factor Shifted Gamma Lévy model are investigated. Moreover, a
novel approach is proposed to estimate banks’ default probabilities, which
are inferred from CDS spreads, assuming an underlying pricing model. This
procedure is quite common in literature, but to our knowledge it has never
been explored in the context of DGS. We also study linear models to link
the default probabilities estimated from CDS spreads to a set of financial
indicators and we apply this model to a larger sample of banks; in this way
we come to an estimate of the default probability also for those banks which
do not underlie a CDS contract.

The approach is applied to a sample of 51 Italian banks accounting for
around 60% of the total amount of eligible deposits and for around 43% of
total assets as of 2006 in Italy.

This paper is organized as follows: Section 2 introduces the main features
of the functioning of DGSs and gives an overview of the existing scientific
literature on DGS; Section 3 describes the methodology applied to build
the empirical loss distributions; Section 4 presents the results and Section 5
concludes.
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2 Summary of the current state of art

2.1 Main features of Deposit Guarantee Schemes

In this paragraph we define some key concepts related to DGSs used in the
remainder of this paper.

The level of coverage is the level of protection granted to deposits in case
of default. If a bank fails, the scheme repays deposits only up to a certain
amount, which is equal to the level of coverage. The scheme has to pay for
every deposit an amount equal to

min { Amount of deposit, Level of coverage} .

In this paper we will work with two types of deposits: eligible deposits and
covered deposits. Eligible deposits are those deposits eligible for protection
by DGSs, i.e. all those classes of deposits which are entitled to be reimbursed
by the scheme in case of failure, before the level of coverage is applied. The
EU Directive fixes which deposits are not entitled to be protected (Arti-
cle 2 of Directive 94/19/EC). DGSs are, however, allowed to choose which
classes of deposits they protect among those listed in Annex I of Directive
94/19/EC. According to the proposal adopted by the European Commission
(2010), only deposits by customers and by non-financial corporations would
be eligible for protection.

Covered deposits are the amount of deposits obtained from eligible de-
posits when applying the level of coverage: this is the amount to be effec-
tively paid by the scheme in case of failure.

The following example will clarify the relationships between the above
elements. Consider a DGS with only one member bank. The bank has 3
deposits, A, B, and C. Suppose the sizes of the deposits are, respectively,
€85, 000 for deposit A, €75,000 for deposit B, and €20,000 for deposit C'.
Moreover, suppose that deposit A is not eligible for protection, and that the
level of coverage is €50,000. The amounts of eligible and covered deposits

are:
Eligible deposits = €(75,000 + 20,000) = €95, 000
Covered deposits = €(50,000 + 20,000) = €70, 000.

Most DGSs in Europe collect contributions from their member banks in
advance, on a regular basis: these contributions fill up the fund the scheme
sets aside and will be employed in case of intervention to repay the deposits.

2.2 Literature Review

Up to our knowledge, the first mathematical model applied to DGSs has
been developed by Merton in his seminal paper (Merton (1977), based on
Merton (1974)) and it has subsequently been implemented by Markus and
Shaked (1984) and by Ronn and Verma (1986). In this model the fair
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premium each bank should pay to the scheme is computed by treating the
deposit insurance as a put option written on the bank’s asset value.

Later on, two main groups of models have been developed. They were
based on two different credit risk models: the reduced-form models and the
structural credit risk models (for a comparison of the two models see, for
example, Jarrow and Protter (2004)).

The first class of models defines defaults as stopping times, whose in-
tensities depend upon financial and macroeconomic conditions. The model
developed by Duffie et al. (2003) for example applies methods for the pricing
of fixed-income securities subject to default risk to compute the fair premia
that banks should pay. The fair premium for each bank is a function of its
short-term credit spread, the expected loss at failure per dollar of protected
deposits and the expected loss given default on the bank’s debt.

The second class of models considers defaults as events occurring when
the bank’s asset value falls below a certain threshold, usually correspondent
to its liabilities’ value.

The model first presented by Bennett (2002) and then reappraised by
Kuritzkes et al. (2002) aims at building an empirical fund’s loss distribution
faced by the American DGS (Federal Deposit Insurance Corporation, FDIC
hereinafter), as loss distribution can be used to determine the appropriate
level of fund adequacy. Banks’ default probabilities are modeled according to
the Vasicek (2002) model and loss distributions are built by running Monte
Carlo simulations. Bennett (2002) investigates some possible techniques to
estimate banks’ default probabilities. The first technique relies upon internal
models which translate credit ratings into default probabilities. Moreover,
logit models are investigated: in these models the log of the odds-ratios is
assumed to be linearly related to a number of financial indicators, covering
capital adequacy, asset quality, earnings and safety-and-soundness areas. In
the paper by Kuritzkes et al. (2002) default probabilities are estimated from
credit ratings of banks provided by Moody’s or Standard & Poor’s and from
the internal credit scoring model developed by FDIC.

Sironi and Zazzara (2004) apply a similar approach to the 15 largest Ital-
ian listed banks. They estimate the empirical loss distribution and compute
risk-based premia that take into account contributions to both scheme’s fund
expected and unexpected losses. Default probabilities are estimated from
Moody’s KMV model (see Crosbie (1999)).

Instead of building an empirical loss distribution using Monte Carlo sim-
ulations, Dev et al. (2006) developed an analytical model to determine the
appropriate size of the scheme’s fund and the premia banks should pay.
They explicitly take into account the banks’ liability structure, especially
distinguishing between insured and uninsured deposits, and claims senior to
deposits.

The model proposed by De Lisa et al. (2010) explicitly considers the
link that exists between deposit insurance and the regulatory framework
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for capital requirements introduced by Basel II. A bank goes into default if
its obligor’s losses exceed its actual capital, which is given by the Basel 11
regulatory capital plus the excess capital, if any. Banks’ default probabilities
and the corresponding losses are computed according to the Basel 11 FIRB
(Foundation Internal Rating Based) formula and by making use of publicly
available regulatory capital information. The impact of systemic risk is
included in the model via two sources. The first source depends on the fact
that banks have correlated exposures and thus common exposures to the
business cycle. The second source depends on the domino effect across the
banking system due to linkages between banks produced by the interbank
lending market.
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3 Research Methodology

In the light of the recent financial crisis, the appropriateness of the size of
a fund of a DGS and the definition of the amount of banks’ contributions
have become a core topic. One of the key issues in the recent scientific
research literature (Campolongo et al. (2010)) is to assess what would be
the adequate size of the fund that a DGS should set aside.

It is straightforward to recognize that the DGS-fund can be regarded
of as portfolios of counterparty risks, as already highlighted, for example,
in the papers by Bennett (2002), Kuritzkes et al. (2002), and Sironi and
Zazzara (2004). These portfolios consist of individual exposures to insured
banks, each of which has a small but non-zero probability of causing a loss
to the fund; in general there is a high probability of a small loss to the fund,
but there is also a (small) positive probability that the fund will incur large
losses stemming from a single large bank failure or from the simultaneous
failure of a large number of banks.

Despite the similarities between the DGS-funds and a portfolio of loans,
it is clear that the default events are different. The defaults on individual
loans simply occur when the borrower is unable to afford its payments, while
banks fail because of a combination of credit, market and operational risks.
Moreover, the failure of a bank is not a sudden event, but is a regulatory one,
because only supervisory authorities can declare the default of an institution.

In the following we will describe the methodology adopted to build the
empirical loss distribution of the fund. The empirical loss distribution has
a twofold scope:

e To assess the current level of security (represented by the distribution’s
percentile) provided to deposits by DGS current financial endowments
(see Campolongo et al. (2010)).

e To choose a proper target size for the fund such that it can afford a
desired level of protection (the target fund is fixed in a way such that
it provides protection up to the desired percentile).

The methodology relies on the four following steps:

1. Estimate banks’ default probabilities from CDS spreads market data
where available and from risk indicators elsewhere and calibrate the
default intensities of the default time distributions;

2. Draw realizations of the asset value process;

3. From the asset values’ draws compute the the corresponding default
times;

4. Evaluate the corresponding losses and compare it with the available
DGS-fund.
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This approach is applied to a sample of 51 Italian banks accounting for
around 60% of the total amount of eligible deposits and for around 43% of
total assets* as of 2006 in Italy.

3.1 Estimating the banks’ default probabilities

We propose to estimate banks’ default probabilities from the corresponding
CDS market data because the CDS premia are among the best measures
of the market pricing of credit risk currently available. This is mainly due
to standardized contracts and the relatively high liquidity in the market
(Raunig and Scheicher (2009)). Unfortunately, CDS contracts are written
only on a very limited number of banks: in 2006, our reference year, CDS
contracts were written on only around 40 European banks, of which only 4
Italian banks.

In order to enlarge our sample, we make use of the entire set of European
banks underlying a CDS contract to investigate possible relations between
default probabilities and the set of financial indicators mentioned in the
proposal (see European Commission (2010)) to compute risk-based contri-
butions. This relation could then be applied to those institutions which do
not have a CDS contract.

In developing this approach, particular attention should be paid to the
differences between the risk-neutral and the historical default probabilities
(labeled DP? and DP” respectively). Mathematically speaking, the risk-
neutral probability is the probability measure under which the current mar-
ket price of a generic contingent claim is equal to the discounted expected
value of its future cash flows (Bjork (1998)). The corresponding risk-neutral
default probabilities are used for pricing because they build an extra return,
called risk premium, to compensate market participants for the risk they are
bearing (Hull et al. (2005)). Historical default probabilities are probabilities
calculated from historical data, and they are not used for pricing purposes.

The two probabilities settings lead to different default probabilities esti-
mates. Historical default probabilities are usually smaller than risk-neutral
ones because the latter probabilities reflect the risk premia required by mar-
ket participants to take on risks associated with default (Duffie and Singleton
(2003)).

According to literature practices, risk-neutral default probabilities are
inferred from prices available on the markets, by assuming some underly-
ing pricing structure. Historical default probabilities are used when eval-
uating and building relationships between default probabilities and eco-
nomic/financial indicators.

In this paper we deal with both default probabilities, depending on the
set of available data for each bank. The following steps are applied to

“Data on total assets have been gathered from European Central Bank publications.
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estimate the default probabilities:

1. Estimate European banks risk-neutral default probabilities from CDS
spreads for the sample of European banks;

2. Using data on the European banks underlying CDS contracts, calibrate
a map between risk neutral and historical default probabilities;

3. Using data on the European banks underlying CDS contracts, estimate
a model between risk indicators and historical default probabilities;

4. Using data on the European banks underlying CDS contracts, apply
the model estimated in step 3 to the sample of Italian banks in order
to get an estimate of their historical default probabilities;

5. Estimate risk-neutral default probabilities by applying the reverse map
mentioned in step 2.

The steps listed above are summarized in Figure 1. The risk-neutral
default probabilities will be used to calibrate the term structure of the banks’
default probabilities.

Estimate Estimate
DP9 from . intensity
CO5S spreads parameters 4,
DPF by Moody's Build the Estimate DPY
historical . map from the map
reports DP°=f(DPR) f
Einafieiil Build the Estimate DPP
. . relation from the map
indicators OPfmhirdicators) h

Figure 1: Procedure for the estimation of banks’ probabilities

3.1.1 Estimating the banks’ default probabilities from CDS

A Credit Default Swap (for a detailed description refer to Duffie and Sin-
gleton (2003) and to Schoutens and Cariboni (2009)) is an over the counter

10
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bilateral agreement where the protection buyer transfers the credit risk of a
reference entity to the protection seller for a determined amount of time 7'.
The buyer of this protection makes predetermined payments to the seller.
The payments continue until the maturity date 7" of the contract, or until
default occurs, whichever is earlier. In the case of default of the reference en-
tity, the protection seller pays to the protection buyer a determined amount.
The CDS spread c is the yearly rate paid by the protection buyer to enter a
CDS contract against the default of a reference entity, reflecting the riskiness
of the underlying credit.

Given the recovery rate R; and the discount factor, the CDS spread ¢;
is a function of the default probability. We assume in our model that the
default time of the i-th bank 7; is exponentially distributed with intensity
parameter \;. We consider the cumulative risk-neutral default probability
p(t), which is the risk-neutral probability that default will occur in [0,¢]
(Schoutens and Cariboni (2009)): the corresponding term structure of the
cumulative risk-neutral default probability for the i-th bank, p;(¢), has the
following expression:

pi(t) =1 — e Nt (1)

It can be easily shown (see Duffie and Singleton (2003), Schénbucher (2003)
and Schoutens and Cariboni (2009)) that the spread is equal to:

C; = (1 — RZ))\Z (2)

In this work we make use of the 2006 daily 5 years-CDS spreads of 40
European banks, provided by Bloomberg®; we also assume a recovery rate
R; constant for all banks and equal to 40%.

3.1.2 Building a map between risk-neutral and historical proba-
bilities
Following Hull et al. (2005), we estimate the historical default probabilities
from statistics on average cumulative global default yearly rates published
by Moody’s (Emery et al. (2008)). In its annual reports, Moody’s provides
estimates of the yearly historical firms default probabilities grouped by rat-
ing classes. Starting from these data, we estimate the corresponding rating
classes’ historical default probabilities. We then associate every rating class
(and every historical default probability) with a risk-neutral default prob-
ability as follows. Given a rating class, we consider all the banks (among
those in our sample of European banks underlying a CDS) belonging to
that class, and we associate that rating with a risk-neutral default proba-
bility equal to the average risk-neutral default probability of all the banks
in that class. For example, focusing on the rating class Aaa, the associated

®Bloomberg has been accessed from Bocconi University, 19" November 2010.

11
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risk-neutral default probability DP[?aa is computed as follows:

|
-
S
R

DPY

aa 7

where na,, is the number of banks with a rating score equal to Aaa and
DPZ-Q is the risk-neutral default probability of the i-th bank with the given
rating (we gathered rating scores for 36 out of 40 European banks from
Moody’s web-site). This procedure let us attain the one to one correspon-
dence between the historical and risk-neutral default probabilities reported
in Table 1.

Rating Aaa Aal Aa2 Aa3 Al A2 A3
DP¥ 0.0975% | 0.1196% | 0.1265% | 0.1558% | 0.1976% | 0.3053% | 0.4957%
DPP 0.0022% | 0.0038% | 0.0067% | 0.0116% | 0.0201% | 0.0348% | 0.0604%

Table 1: One-to-one correspondence between historical and risk-neutral
default probabilities. Data sources: Emery et al. (2008), Moody’s and
Bloomberg

From the one-to-one correspondence we want to infer a continuous and
closed form map that allows us move from one probability measure to the
other:

DPF = f(DP?), f:[0,1] — [0,1].

The function f(-) must be convex because DP? > DPP and must satisfy
the constraint f(0) = 05 (see Berg (2010)). A suitable expression for f is
thus

fl@)=e" —1. (3)

We calibrate the model by minimizing the Root Mean Square Error:
according to this procedure, the optimal parameter is a = 1.39. Figure 2
presents the results of the calibration exercise. The blue dots are the points
in Table 1. The continuous line is the map of Equation (3) calibrated on
the same set.

Using the calibrated map f, we can estimate the historical default prob-
abilities of the 40 European banks in our sample.

It is important to stress why we want to move from the risk-neutral to
the historical probability measures. According to literature practices (Chan-
Lau (2006)), we use risk indicators, built from balance sheet variables, to
estimate banks’ default probabilities. Balance sheet data are backward look-
ing by construction, and they give information only on what has happened

SWe should also take into account the second constraint f(1) = 1. As our data are all
close to zero and default probabilities will be unlikely to assume values close to one, we
relax the second constraint.

12



Int. Statistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session STS072) p.3799

x107 Map between historical and risk-neutral default probabilities

8 T T T T T T
+  Empirical values
— Map

0 I I I I I I I I I
0 0.5 1 15 2 25 3 35 4 4.5 5

DP? x10°

Figure 2: Procedure for the estimation of banks’ probabilities

in the past (Huang et al. (2009)). If we want to use these variables to get
banks’ default probabilities estimates, the correct probability to be associ-
ated to them is the historical default probability, because it is a backward
looking probability measure. Risk-neutral probabilities, on the contrary, are
forward looking measures and thus this choice would be incongruous with
the backward looking behavior of risk indicators based on balance sheet
data.

3.1.3 Building a map between risk indicators and historical de-
fault probabilities

We investigate linear models
DPP =XB+e (4)

between the historical default probabilities estimated in Section 3.1.2 and
a set of financial (risk) indicators. In literature there exists a number of
possible financial indicators; in this paper we have restricted our attention
to the risk indicators mentioned in the proposal adopted by the European
Commission (2010). As liquidity indicators are left to the discretion of the
single Schemes, we have taken into account those suggested by the Joint
Research Centre of the European Commission (2009). Risk indicators and
balance sheet data as of 2006 have been gathered by Bankscope database”.

Among all possible choices of indicators, the set of indicators that best
explains the DP? is the one listed in Table 2. The R? coefficient of this

"Bankscope has been accessed from Bocconi University, Milan, 19'" November 2010.

13
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Exc. Capital

ROAA S —

Total Assets

Liquid Assets Exc. Capital
Customer & ST Funding | Risk-weighted Assets
Net Loans Loan Loss Provisions

Customer & ST Funding | Net Interest Revenue

Loan Loss Provisions

Cost to Income

Operating Income

Table 2: Financial indicators for the regression model. Data source:
Bankscope

regression is 50.78% and the corresponding p-value is 5.2%.

3.1.4 Estimating historical default probabilities

We now focus on the sample of 51 Italian banks. Starting from 2006 data
on risk indicators, we apply the model above estimated (Equation (4)) in
order to get an estimate of the historical default probabilities.

3.1.5 Estimating risk-neutral default probabilities

We apply the reverse map described by Equation (3) to the previously esti-
mated historical default probabilities and we get an estimate of risk-neutral
default probabilities for the 51 Italian banks.

We assume all Italian banks to have the term structure default proba-
bility described by Equation (1); under this assumption, from the estimated
risk-neutral default probabilities we get default intensity \; estimates:

A\ =—In(1 - DP?).

Default intensity parameters are among the inputs of the loss distribution’
simulation (see Section 3.3).

3.2 Simulating banks’ defaults

In order to build the empirical loss distribution of the scheme’s fund, we
must define what we mean by default. In the general case of a credit port-
folio, a loss occurs if a borrower defaults. In the specific case of a Deposit
Guarantee Scheme, a loss occurs if an insured bank fails, thus triggering a
fund’s payout, as assumed for example by Sironi and Zazzara (2004). In
particular we assume that a single bank goes into default when its asset
value falls below a certain threshold. In the following we propose two ap-
proaches to model the bank’s asset value, both based on generic one-factor

14
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Lévy models: the Gaussian one-factor model and the Shifted Gamma Lévy
model (see Schonbucher (2003) and Albrecher et al. (2006)).

3.2.1 Generic One-Factor Lévy Model

In this paragraph we first shortly present Lévy processes and then we intro-
duce the generic one-factor Lévy model.

Let ¢(z) be the characteristic function of a distribution. If, for every
positive integer n, ¢(z) is also the n-th power of a characteristic function,
we can say that the distribution is infinitely divisible. One can define for
every infinitely divisible distribution a stochastic process X = {X;,¢t > 0},
called Lévy process, which starts at zero, has stationary and independent
increments and such that the distribution of an increment X, — X, with
s,t > 0 has (¢(2))" as characteristic function (see Schoutens (2003), Cont
and Tankov (2004) and Schoutens and Cariboni (2009) for more details
about the applications of Lévy processes in finance).

The function ¥ (z) := log ¢(z) is called the characteristic exponent and
it satisfies the following Lévy-Khintchine formula

2 +oo
P(z) = iyz — %22 + / (e — 1 —izalyy<y) v(dz), z€R,

where v € R, ¢2 > 0, and v is a measure on R\ {0} such that

+oo
/ (1A z?)v(dz) < oco.
—00

From the Lévy-Khintchine formula one sees that, in general, a Lévy process
consists of three independent parts: a linear deterministic part, a Brownian
part, and a pure jump part. The corresponding infinitely divisible distribu-
tion is said to have a Lévy triplet [v,<2,v(dz)].

The measure v is called the Lévy measure and it dictates how the jumps
occur: jumps of sizes in a set A occur according to a Poisson process with
parameter v(A) = [, v(dz): v(A) is thus the expected number of jumps per
unit of time whose size belongs to A.

Now we turn to the generic one-factor Lévy model. Let us choose an
infinitely divisible distribution L and let X = {X,,u € [0,1]} and X =
{X&i),u € [0,1]}, i = 1,..., M be independent and identically distributed
Lévy processes such that X; and sz), 1 =1,...,M follow the law L. We
further assume that E[X] = 0 and var(X;) = 1 and from this it can be
shown that var(X,) = u.

Let p € (0,1); the generic one-factor Lévy model for the asset value of
the i-th bank, i = 1,..., M at time t is of the form

At) =X, + X, i=1,...,M (5)
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Each A;(t) has by the stationary and independent increments property the
same distribution L with distribution function Fl,, where F, is the dis-
tribution function of X,,u € [0,1]. As a consequence, E[A;(t)] = 0 and
var(A;(t)) = 1. Furthermore, it can be easily proved that the asset values
of any two banks ¢ and j, with ¢ # j, are correlated with linear correlation
coefficient p.

The default probability term structure for all banks p;(t), 0 <t < T is
known (see Section 3.1.1 and Section 3.1.5). The i-th bank defaults at time
t if the asset value A;(t) falls below a determined threshold K;(t). In order
to match default probabilities under this model with the term structure
of default probabilities defined in Equation (1), we have to set K;(t) =

F;;l)(pi(t)). It follows that:

PAi(H) < Ki(t)] = P |Ai(t) < F Y (a(0) | = P, (F Y (0i8)) = pi®)
i > Ay i S by, TP X1 x;, \Pi pi(t).

From the above relationship, the default time 7; of the i-th bank then equals:

7= p) (i (4)) =~ = (49)) "

where )\; is the default intensity of the default probability term structure
(Equation (1)), and A; is a realization of the asset value process A;(t).

3.2.2 One-factor Gaussian model

The Brownian motion is a particular Lévy process with Lévy triplet [u1, o2, 0].
The generic one-factor Lévy model built with a Brownian motion coincides
with the Vasicek (2002) model. The generic one-factor Lévy model in this
case can be rewritten as:

Ai(t):\/ﬁY—i-\/l—pXi, i=1,..., M, (7)

where Y and X; i = 1,..., M are independent normally distributed random
variables with zero mean and variance 1, p € (0,1) and M is the number
of banks (see Schonbucher (2003)). The variable Y is a common factor and
can be interpreted as a systematic risk factor, common to all banks, while
X, is an idiosyncratic noise component and it represents the firm specific
risk factor; the parameter p is the correlation factor. This model assumes
that the vector of M asset values A;(t) is multivariate standard Normal

distributed:
1 i=j
A;(t)] ~ N(0,Y), here ¥;; = o
A0~ N0.9), where s, = { 112

In this case the default time 7; of the i-th bank equals:

_ In(1 - 2(4))
%
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where ® is the cumulative distribution function of the standard Normal dis-
tribution, A; is the default intensity of the default probability term structure
(Equation (1)), and A; is a realization of the asset value process A;(t).

3.2.3 One-factor Shifted Gamma Lévy model

We recall that the density function of the gamma distribution Gamma(a, b)
with a > 0, b > 0 has the following expression:

2% le ™ 2 >0

f(ﬂf):m ;

and the corresponding characteristic function is given by

1
¢(Z)_W, z e R.

The characteristic function is infinitely divisible.

Let us consider a unit-variance gamma process G = {G,,u > 0} with
parameters a > 0 and b = /a such that E[G1] = \/a and var(G;) = 1. As
a driving Lévy process we consider the Shifted Gamma process:

Xy = Vau— Gy, uel01]. 9)

The (financial) interpretation in terms of asset value is that there is a de-
terministic up trend, given by /au with random downward shocks G, (see
Albrecher et al. (2006)).

The one-factor shifted Gamma Lévy model is given by Equation (5)

Alt) =X, + X, i=1,...,M,

where X, and {X}i_)p, p€(0,1)}i=1,..., M are independent standardized
Shifted Gamma processes, defined as

X,=+Vap—G, and X{i_)p =+Va(l—p) — Gi_p.

By construction, each A;(t) has the same distribution as Xj.

In order to compute the default time given by Equation (6) we have to
compute the distribution function of X;. As already mentioned, let Fx,
be the distribution function of Xj: this distribution function can be easily
obtained from the Gamma distribution function:

FXl(x) = P[Xlﬁx]
PlVa— Gy <y
1—P[G1<\/a—l’]
= 1-F(Va-u),
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where Fr is the distribution function of a Gamma(a, /a) random variable.
In this case, Equation (6) to compute the default time 7; from the realizations
A; of the process A;(t) becomes:

o= (i, (4)) = 2TV AD) (10)

Without loss of generality, in the following we will consider a = 1.

3.3 Generating the empirical distribution of the portfolio
loss

As already explained above, the aim of this paper is to design an effective
DGS. In particular we want to define a target level for the funds to be
collected be the scheme in order to promptly and effectively respond to
financial crisis and protect the citizens. To achieve this objective, we have
to build the distribution of the fund’s loss. The following hypotheses hold
true:

e The time horizon T is 1 year.

e With reference to the DGS design outlined in the proposal by the
European Commission (2010), we assume the DGS to have a target
fund at its disposal equal to 2% of the amount of eligible deposits held
by all banks joining the scheme.

e When a bank failure occurs, the fund has to pay back deposits of that
bank. The exposure at default FAD; is assumed to be equal to the
amount of covered deposits held by that bank and thus the loss the
fund suffers from is

The total loss hitting the fund is estimated by aggregating individual
bank losses.

The numerical simulation to build the empirical distribution of the fund’s
loss is based on the following main steps:

1. Calibration of the default intensities \; by assuming all banks to have
the risk-neutral default probability term structure described by Equa-
tion (1). From CDS spreads market data default intensities are es-
timated by inverting Equation (2). For all the other banks default
intensities are calibrated from the default probabilities estimated from
risk indicators, as detailed in Section 3.1.
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2. Drawing of M realizations (one for each bank in the scheme) of the
asset value process A;(t), according to the models described in Section
3.2. Two different numerical simulations will be run; in the former,
the process A;(t) follows a one-factor Gaussian model, while in the
latter A;(t) follows a one-factor Shifted Gamma Lévy model.

3. Estimation of the default times 7; from Equations (8) and (10), using
the A; and \; obtained in step 2 and 1 respectively.

4. Simulation of the loss distribution: if 7; < T', the bank defaults and
the funds pays out an amount equal to L; given by Equation (11).

In this exercise N = 100,000, M = 51 and p = 70%. Data on deposits
are estimated from accounting data (Bankscope), Eurostat and from the
data gathered from a survey distributed by the European Commission Joint
Research Centre among European DGS in 2009. According to these data,
the total amount of 2006 covered deposits in the sample is €277.4 billion,
the corresponding target size is around €7.7 billion.
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4 Results

In this section we want to present the results of the simulations described
in Section 3. The main results are presented in Section 4.1. An additional
analysis has been developed focusing on a legislative proposal adopted by
the European Commission (see European Commission (2010)): results are
presented in Section 4.2.

4.1 Simulations’ results

We have run the simulations N = 100,000 times and we have simulated
the corresponding fund’s behavior. In the following we first present the
results obtained when the banks’ underlying asset-value process follows a
one-factor Gaussian model (Section 4.1.1) and then we move to the results
corresponding to the one-factor Shifted Gamma Lévy model (Section 4.1.2)

4.1.1 Simulations’ results: one-factor Gaussian model

The two histograms in Figure 3 plot the empirical loss distributions of our
reference banking system, which is the sample of 51 Italian banks, when the
banks’ underlying asset-value process follows a one-factor Gaussian model.
Figure 3(a) shows the empirical loss distribution of the whole sample of
Italian banks. Figure 3(b) shows the conditional loss distribution of the
sample: this is the loss distribution when at least one bank has failed and
it has been built considering only the simulations containing at least one
default.

Banks' loss distribution Banks' conditional loss distribution

o 20 40 60 80 100 120 140 160 180 o 20 40 60 80 100 120 140 160 180
Losses (billion €) Losses (billion €)

(a) One year Italian sample banks’ loss dis- (b) One year Italian sample banks’ condi-
tribution tional loss distribution

Figure 3: Ome year loss distribution of the Italian sample of banks; the
banks’ underlying asset-value process follows a one-factor Gaussian model

Due to scaling problems we also report the corresponding loss distribu-
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tions in Table 3. According to Table 3(a), the probability that at least one
bank goes into default is equal to 4.15%. This probability has been com-
puted by looking at the highest percentile in Table 3(a) where no default
occurs.

(a) One year Italian sample banks’ (b) One year Italian sample banks’

loss distribution conditional loss distribution
Percentile | Loss (million €) Percentile | Loss (million €)
95.00% 0 25.0% 586
95.85% 0 50.0% 2,873
95.86% 2 71.3% 7,659
97.65% 2,217 71.4% 7,723
97.66% 2,319 75.0% 11,283
98.00% 3,070 90.0% 30,911
98.81% 7,645 95.0% 44,683
98.82% 7,787 99.0% 91,913
99.00% 13,003 99.9% 136,991
99.90% 67,040 100.0% 162, 202
99.99% 127,014
100.00% 162, 202

Table 3: One year loss distribution of the Italian sample of banks; the banks’
underlying asset-value process follows a one-factor Gaussian model

We now can consider the effects of the protection afforded by the DGS,
whose main aim is to absorb banks’ losses. In this analysis the scheme is
assumed to have €7.7 (target fund) billion at its disposal. If we compare this
amount with the loss distribution shown in Table 3(a), we can conclude that
such a designed Italian DGS is able to cover up to 98.81% of its potential
losses®. The corresponding loss distributions are shown in Figure 4 and the
figures corresponding to the most relevant percentiles are reported in Table
4: according to these figures, the probability that the DGS goes into default
is around 1.19% (see Table 4(a)).

The simulation procedure described in Section 3 can be applied to seek
the “optimal” size of the fund the DGS should set aside. First of all, the
“optimal” criterium must be identified: one possible choice is to seek the
optimal size of the fund, expressed as a percentage of eligible deposits, such
that a desired percentage of the potential banks’ failures are covered. We
have let the size of the fund vary over a wide range, i.e. from 1% to 50%
and results are shown in Figure 5. The x-axis plots the target level’s sizes,

8 Although ex-post financed, the Italian DGS has a virtual target fund at its disposal,
whose size is equal to 0.8% of the amount of covered deposits (see Fondo Interbancario di
Tutela dei Depositi (2006)). The virtual target fund, rescaled on our sample, is equal to
€2.22 billion and it can cover up to 97.65% of the fund’s potential losses.
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Fund's loss distribution

0 20 40 60 120 140 160 180 ] 20 40 60 120 140 160 180

80 100
Losses (billon €)

80 100
Losses (billon €)

(a) One year DGS loss distribution (b) One year DGS conditional loss distribu-
tion

Figure 4: One year empirical loss distribution of the Italian DGS; the banks’
underlying asset-value process follows a one-factor Gaussian model

(a) One year DGS loss distribu- (b) One year DGS conditional loss

tion distribution
Percentile | Loss (million €) Percentile | Loss (million €)
95.00% 0 10.00% 2,879
98.81% 0 25.00% 8,370
98.82% 120 50.00% 14,982
99.00% 5,335 75.00% 29,044
99.90% 59,372 90.00% 53,103
99.99% 119, 347 95.00% 71,466
100.00% 154,534 99.00% 118, 362
99.90% 149, 465
100.00% 154,534

Table 4: Empirical loss distribution of the Italian DGS; the banks’ underly-
ing asset-value process follows a one-factor Gaussian model

expressed as a percentage of eligible deposits, while the y-axis plots the
corresponding percentage of potential banks’ losses covered by the fund; the
red point corresponds to the setting analyzed so far. If, for example, we
want a target size which would cover at least 99% of the losses, the fund
should set aside a fund equal to 3.2% of the amount of eligible deposits.

4.1.2 Simulations’ results: one-factor Shifted Gamma Lévy model

We now present the results when asset-value processes follow a one-factor
Shifted Gamma Lévy model. The two histograms in Figure 6 plot the em-
pirical loss distributions of our reference banking system. Figure 6(a) shows
the empirical loss distribution of the whole sample of Italian banks, while
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Target level of the Fund — one—factor Gaussian model
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Figure 5: Optimum target; the banks’ underlying asset-value process follows
a one-factor Gaussian model

Figure 6(b) shows the conditional loss distribution of the sample.

Banks' loss distribution Banks' conditional loss distribution

0 - 1 1 1 . . . -
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Losses (billion €) Losses (billion €)

(a) One year Italian sample banks’ loss dis- (b) One year Italian sample banks’ condi-
tribution tional loss distribution

Figure 6: One year loss distribution of the Italian sample of banks; the
banks’ underlying asset-value process follows a one-factor Shifted Gamma
Lévy model

Following the approach developed in Section 4.1.1, we report the corre-
sponding loss distributions in Table 5. According to Table 5(a), the prob-
ability that at least one bank goes into default now slightly increase, from
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4.15% of the previous simulation to 4.91%.

(a) One year Italian sample banks’ (b) One year Italian sample banks’

loss distribution conditional loss distribution
Percentile | Loss (million €) Percentile | Loss (million €)
95.00% 0 25.0% 442
95.09% 0 50.0% 1,046
95.10% 5 75.0% 3,615
96.00% 313 83.2% 7,642
98.00% 2,341 83.3% 7,770
99.00% 6,080 90.0% 16, 689
99.17% 7,437 95.0% 31,419
99.18% 7,750 99.0% 164, 455
99.90% 99, 280 99.9% 166, 440
99.99% 166, 440 100.0% 166, 440
100.00% 166, 440

Table 5: One year loss distribution of the Italian sample of banks; the
banks’ underlying asset-value process follows a one-factor Shifted Gamma
Lévy model

We now consider the effects of the protection afforded by the DGS. If we
compare the target at its disposal with the loss distribution shown in Table
5(a), we can conclude that such a designed Italian DGS is able to cover up
to 99.17% of its potential losses. The corresponding loss distributions are
shown in Figure 7 and the figures corresponding to the most relevant per-
centiles are reported in Table 6: according to these figures, the probability
that the DGS goes into default is around 0.83% (see Table 6(a)).

(a) One year DGS loss distribu- (b) One year DGS conditional loss

tion distribution
Percentile | Loss (million €) Percentile | Loss (million €)
95.00% 0 10.00% 5,324
99.00% 0 25.00% 8,370
99.17% 0 50.00% 13,413
99.18% 82 75.00% 28,470
99.90% 91,612 90.00% 126, 152
99.99% 158,773 95.00% 156, 835
100.00% 158,773 99.00% 158,773
99.90% 158,773
100.00% 158,773

Table 6: Empirical loss distribution of the Italian DGS; the banks’ underly-
ing asset-value process follows a one-factor Shifted Gamma Lévy model
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Figure 7: One year empirical loss distribution of the Italian DGS; the banks’
underlying asset-value process follows a one-factor Shifted Gamma Lévy
model

If we consider the virtual target fund the Italian DGS has at its disposal
(0.8% of covered deposits) and if we rescale it on our sample, we can conclude
that such a fund can cover up to 97.93% of the potential losses.

We replicate the exercise described in Section 4.1.2 to seek the “optimal”
size of the Fund the DGS should set aside. Results are shown in Figure 8.

Target level of the Fund — one-factor Shifted Gamma Lévy model
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Figure 8: Optimum target; the banks’ underlying asset-value process follows
a one-factor Shifted Gamma Lévy model
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4.2 Simulation over 10 years

As already mentioned before, the European Commission adopted a proposal
for a new Directive on DGS aiming at simplifying and harmonizing many
aspects of the DGS functioning (see European Commission (2010)). Accord-
ing to this document, DGS should move to an ex-ante financing mechanism,
protect only certain classes of deposits and the fund should reach within 10
years a target level equal to 2% of the amount of eligible deposits. Using
the model described in Section 3, we have investigated the main features
outlined in this document.

As already outlined, we have run the simulations N = 100,000 times and
we have simulated the fund’s behavior over the transition period T equal to
10 years. During this period, the size of the fund can fall below zero, but
at the end of the transition period 7' it must be positive; if not, the DGS
is assumed to be in default. Figure 9 shows three possible fund’s paths:
the green and the red paths represent the case where the scheme does not
default, even if, in one case (red line) the fund falls below zero during the
transition period; the blue path, on the contrary, represents the case where
the scheme defaults, because at the end of the transition period the fund is
negative.

x 10

Size of the Fund

Figure 9: Simulated paths for the fund

Following the approach of Section 4.1, we first present the banking sys-
tem empirical loss distribution. The two histograms in Figure 10 plot the
unconditional (Figure 10(a)) and conditional (Figure 10(b)) empirical loss
distributions of our reference banking system, which is the sample of 51
Italian banks. Distributions are also reported in Table 7: according to the
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Banks' loss distribution Banks' conditional loss distribution
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(a) Ttalian sample banks’ loss distribution (b) Italian sample banks’ conditional loss
distribution

Figure 10: Loss distribution of the Italian sample of banks

figures in Table 7(a), the probability that at least one bank goes into default
is equal to 22.38%. We now can consider the effects of the protection af-

(a) Italian sample banks’ loss dis- (b) Italian sample banks’ condi-

tribution tional loss distribution
Percentile | Loss (million €) Percentile | Loss (million €)
75.00% 0 25.0% 1,040
77.62% 0 50.0% 4,968
77.63% 5 56.6% 7,656
80.00% 442 56.7% 7,708
85.00% 2,271 75.0% 23,364
90.00% 7,315 90.0% 53,416
90.29% 7,656 95.0% 81,981
90.30% 7,676 99.0% 136, 236
95.00% 26,414 99.9% 165, 441
99.00% 86, 343 100.0% 166, 440
99.90% 154,879
99.99% 166, 409
100.00% 166, 440

Table 7: Loss distribution of the Italian sample of banks

forded by the DGS, whose main aim is to absorb banks’ losses. Recall that,
during the transition period, the DGS collects annual contributions from
its member banks such that, if no default occurs, the scheme is assumed to
have €7.7 billion at its disposal at the end of the transition period. The
fund’s loss distributions are are shown in Figure 11 and the most relevant
percentiles are reported in Table 8. According to these figures, the prob-
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ability that the DGS goes into default is around 9.71% (see Table 8(a)).

Funds’ loss distribution

L
0 20 40 60 80

L L L L
100 120 140 160 180

Losses (billon €)

(a) DGS loss distribution

Funds' conditional loss distribution

(b) DGS conditional loss distribution

60 80 100 120

Losses (billon €)

140

Figure 11: Empirical loss distribution of the Italian DGS

(b) DGS conditional loss distribu-

(a) DGS loss distribution tion
Percentile | Loss (million €) Percentile | Loss (million €)
90.00% 0 10.00% 3,201
90.29% 0 25.00% 8,955
90.30% 9 50.00% 19, 650
95.00% 18,747 75.00% 42,572
99.00% 78,675 90.00% 79, 894
99.90% 147,212 95.00% 106,916
99.99% 158,742 99.00% 148,221
100.00% 158,773 99.90% 158, 760
100.00% 158,773

Table 8: Empirical loss distribution of the Italian DGS

The simulation procedure described in Section 3 can again be applied
to seek the “optimal” size of the fund the DGS should set aside. We have
let the size of the fund vary over a wide range, i.e. from 1% to 50% and
results are shown in Figure 12. If, for example, we want a target size which
could cover up to 95% of the losses, the fund should fix a target level equal

to 6.6% of eligible deposits.
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Figure 12: Optimum target
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5 Conclusions

This article has investigated a possible technique to design an effective DGS.
We have focused in particular on the empirical loss distribution of the fund,
as it can be used to assess the current level of security provided to deposits
by the fund and to choose a proper target size for the fund. The empirical
loss distribution has been gathered by simulating banks’ defaults and the
corresponding losses potentially hitting the system.

The procedure adopted to simulate the loss distributions has relied on
the classical credit risk techniques. Defaults have been assumed to occur
if the bank’s asset-value has fallen below a threshold, asset-value processes
have been assumed to follow a generic one-factor model and default times
have been assumed to be exponentially distributed. A novel approach has
been proposed to model asset-value processes and to estimate banks’ de-
fault probabilities. Asset-value processes have been assumed to follow a
generic one-factor Lévy process and in particular the one-factor Gaussian
model and the one-factor Shifted Gamma Lévy model have been investi-
gated. Moreover, a novel approach has been proposed to estimate banks’
default probabilities, which are inferred from CDS spreads, assuming an un-
derlying pricing model. In fact, CDS premia are regarded of as among the
best measures of the market pricing of credit risk currently available. This is
mainly due to standardized contracts and the relatively high liquidity in the
market. This procedure is quite common in literature, but to our knowledge
it has never been explored in the context of DGS.

Our approach has been applied to a sample of Italian banks accounting
for 60% of the amount of eligible deposits and for around 43% of total assets
as of 2006. Moreover we have assumed the DGS to have at its disposal a
target fund equal to 2% of the amount of eligible deposits. According to
our results, such a designed DGS could cover up to 98.81% of its potential
losses, in case the underlying asset-value process follows a one-factor Gaus-
sian model. If the DGS wanted to set aside a fund capable to cover up to
99% of its potential losses, it should raise its fund up to 3.2% of the amount
of eligible deposits. If we assume asset-value processes to follow a one-factor
Shifted Gamma Lévy model, the corresponding DGS could cover losses up
t0 99.17% of its potential losses.
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