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1 Introduction

The use of a time-changed Brownian motion in finance was first proposed by Clark to model cotton
future prices [8]. His pioneer work was motivated by the fact that the information flow directly affects
the evolution of the price through time. More precisely, when the amount of available information is
low, the trading is slow and the price process evolves slowly and the other way around. Since then
the concept of business clock has been widely considered in the financial literature, first to model
univariate stock price processes ([1], [5], [15]), before being extended to the multivariate setting.
Madan and Senata [15] first proposed to subordinate a multivariate Brownian motion by an univariate
Gamma time change. However, the uniqueness of the business clock makes impossible to capture
independency of the stock log-returns. Hence, Semeraro [16] proposed the so-called αVG model
which rests on a multivariate subordinator process composed of the weighted sum of two independent
Gamma processes: an idiosyncratic and a common component. Later, Luciano and Semeraro [14]
extended the αVG model to other Lévy distributions by considering other subordinators. This class
of multivariate models was motivated by the empirical work of Lo and Wang [12] which gives evidence
for the presence of a significant common component in the trading volume and by the study of Harris
[9] which shows that the distribution of the information flow is not identical for all securities. In the
original setting, Luciano and Semeraro imposed some restrictions on the subordinator parameters such
that the subordinator follows the same distribution as its two components, leading to marginal log-
return processes of a particular Lévy type. Under this restricted setting, the marginal characteristic
functions become independent of the common subordinator setting which affects only the dependence
structure of the asset log-returns. This might lead to two undesired features in practice. First, the
risk-neutral calibration of the common subordinator parameters requires liquid multivariate derivative
quotes which are often unavailable. Secondly, the variance and therefore the volatility of the asset
log-returns turn out to be independent of the common subordinator setting. Since the volatility level
is directly related to the trading activity, the conditions imposed on the time change parameters imply
that the trading activity does not depend on the common component of the business clock, but only
on the idiosyncratic one.
If the marginal class is not a desired feature, the model can first be extended by relaxing the constraints
imposed on the subordinator parameters. The such obtained generalized αVG model ([10]) belongs
to the class of exponential Lévy models, although the particular underlying Lévy distribution is not
known anymore. We will show that the marginal characteristic functions and consequently also the
volatility of the asset log-returns then depend on both the idiosyncratic and common subordinator
settings and more specifically on the whole set of parameters. Hence the generalized model is more
in line with the empirical evidence of the presence of both a common and an individual component
in the business clock and its calibration does not require the existence of actively traded multivariate
derivatives anymore.

Nevertheless, given the Lévy margins, the original and generalized αVG models are usually
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not able to replicate quoted option prices in both the strike and time to maturity dimensions with
enough precision, especially during investor’s fear periods ([10]). Hence, we will propose a new class
of models, the so-called Sato two factor models and study the particular case of the VG Sato model.
These models are obtained by replacing the Lévy time changed Brownian motions in the setting of
Luciano and Semeraro by Sato time changed Brownian motions and lead to marginal characteristic
functions of the Sato type.

2 The αVG Lévy and Sato models

Under the αVG models, the N-dimensional stock return is modelled by the exponential of a multivari-
ate time-changed Brownian motion:
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where S(i)
0 is the spot price of the ith underlying, r is the risk-free interest rate, qi denotes the dividend

yield of the ith stock and Y = {Yt, t ≥ 0} is a N -dimensional time-changed Brownian motion. More
particularly, under the Lévy settings, the process Y is given by
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where W (i), i = 1, . . . , N are independent standard Brownian motions and where the subordinators
G

(i)
t ’s are the weighted sum of two Gamma processes, one idiosyncratic and one common process:
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where αi > 0, Z1 ∼ Gamma(c1, c2), c1, c2 > 0 and X
(i)
1 ∼ Gamma(ai, bi), ai, bi > 0 are independent

random variables and are independent on the W (i)’s.
On the other hand, under the Sato settings, the log-asset returns are built by space scaling the

time-changed Brownian motions taken at unit time:

(2) Yt =


Y

(1)
t

Y
(2)
t

. . .

Y
(N)
t

 =


θ1t

γ1G(1) + σ1t
γ1W

(1)

G(1)

θ2t
γ2G(2) + σ2t

γ2W
(2)

G(2)

. . .

θN t
γNG(N) + σN t

γNW
(N)

G(N)

 ,

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS072) p.3822



where

G =


G(1)
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 .

• The Gamma process

The Gamma process is a Lévy process built on the Gamma distribution and is defined on the
positive real line. The characteristic function of the Gamma distribution Gamma(a, b) with
parameters a > 0, b > 0 is given by:

φGamma(u; a, b) =
(

1− iu
b

)−a
.

The Gamma process X = {Xt, t ≥ 0} is a Lévy process such that Xt follows a Gamma(at, b) dis-
tribution. The Gamma distribution satisfies the following scaling property: ifX ∼ Gamma(a, b)
then cX ∼ Gamma(a, b/c), c > 0. Moreover, the sum of independent Gamma random variables
with the same parameter b is also a Gamma random variable: if Xi ∼ Gamma(ai, b), i =

1, . . . , N are N independent random variables then
N∑
i=1

Xi ∼ Gamma(
N∑
i=1

ai, b). The first four

moments of the Gamma distribution are given in Table 1.

Gamma(a, b)

mean a
b

variance a
b2

skewness 2√
a

kurtosis 3
(
1 + 2

a

)
Table 1: Characteristics of the Gamma distribution

• The Variance Gamma (VG) process

The Variance Gamma process is a Lévy process built on the Variance Gamma distribution. The
characteristic function of the Variance Gamma distribution VG(σ, ν, θ) with parameters σ > 0,
ν > 0 and θ ∈ R is given by:

φVG(u;σ, ν, θ) =
(

1− iuθν +
u2σ2ν

2

)−1
ν
, u ∈ R.

The Variance Gamma process X = {Xt, t ≥ 0} is a Lévy process such that Xt follows a
VG(

√
tσ, νt , θt) distribution. The VG distribution satisfies the following scaling property: if

X ∼ VG(σ, ν, θ) then, for c > 0, cX ∼ VG(cσ, ν, cθ). The first four moments of the VG dis-
tribution are given in Table 2. A parameter θ equal to zero indicates a symmetric distribution
around zero whereas negative and positive values of θ lead to negative and positive skewness,
respectively. The parameter ν primarily controls the kurtosis (see Table 2).

The VG distribution is sometimes defined with respect to another parameter set {C > 0, G >

0,M > 0}. This parametrization can be inferred from the {σ, ν, θ} parametrization by

C = 1
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(√
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4 + σ2ν
2 −

θν
2

)−1

M =
(√

θ2ν2

4 + σ2ν
2 + θν

2

)−1

.
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VG(σ, ν, θ)

mean θ

variance σ2 + νθ2

skewness
θν
(
3σ2+2νθ2

)(
σ2+νθ2

) 3
2

kurtosis 3
(

1 + 2ν − νσ4

(σ2+νθ2)2

)
Table 2: Characteristics of the Variance Gamma distribution.

The characteristic function then becomes

φVG(u;C,G,M) =
(

GM

GM + (M −G)iu+ u2

)C
.

The VG(C,G,M) process can be expressed as the difference of two Gamma processes: Xt =
G

(1)
t − G

(2)
t where G(1) = {G(1)

t , t ≥ 0}, G(1)
t ∼ Gamma(Ct,M) and G(2) = {G(2)

t , t ≥ 0},
G

(2)
t ∼ Gamma(Ct,G) are two independent Gamma processes. The Lévy measure of the VG

process is given by (see [4])

(3) νVG(dx) =

{
C exp(Gx)
|x| dx x < 0,

C exp(−Mx)
|x| dx x > 0.

Hence, Variance Gamma processes are of finite variation and infinite activity.

Moreover, a VG(σ, ν, θ) process can be seen as a Gamma time-changed Brownian motion with
drift:

XVG
t = θGt + σWGt

where G = {Gt, t ≥ 0} is a Gamma process with parameters a = b = 1
ν and W = {Wt, t ≥ 0} is

a standard Brownian motion independent of G.

• The VG Sato process

Definition 1. The distribution of a random variable X is self-decomposable if, for any con-
stant c, 0 < c < 1, X has the same probability law as the sum of a down-scaled version of itself
and an independent random variable Xc:

(4) X
d= cX +Xc.

Self-decomposable distributions are a sub-class of infinitely divisible distributions with a Lévy-
Khintchine representation of the form

(5) ΨX(u) = iγu− σ2

2
u2 +

∫ +∞

−∞

(
exp(iux)− 1− iux1|x|<1

) h(x)
|x|

dx

where h(x) ≥ 0 is decreasing for positive x and increasing for negative x. Hence, self-decomposable
laws are necessarily of infinite activity.

A Sato process can be constructed from any self-decomposable distribution as follow: the prob-
ability law of the Sato process at time t is obtained by scaling the self-decomposable law of X
at unit time (see [6]):

Xt
d= tγX,
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where γ is the self-similar exponent. Sato processes are thus processes with independent but
time inhomogeneous increments.

From Equation (5) and the Lévy density of the VG process (3), it is clear that the VG proba-
bility law at unit time is self-decomposable for all acceptable VG parameter sets {σ, ν, θ}. The
characteristic function of the VG Sato process at time t is thus given by

φVG Sato(u, t;σ, ν, θ, γ) = φVG(u, 1; tγσ, ν, tγθ)

=
(

1− iuνθtγ + σ2νt2γu2

2

)−1
ν
.

3 Model characteristics

3.1 The Generalized αVG model

The characteristic function of the process Yt (1) is given by:
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Given the independence of the X(i)
t ’s, i = 1, . . . , N and Zt, we finally obtain Equation (6).

The marginal characteristic functions are directly obtained from (6):
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From the marginal characteristic function (7), it is clear that each process Y (i) = {Y (i)
t , t ≥ 0}, i =

1, . . . , N is a Lévy process (although not necessarily VG) since the marginal characteristic function
can be rewritten as φY (i)(u, t) = (φY (i)(u, 1))t.

The linear correlation between the processes Y (i)
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(j)
t is time independent:
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where

Cov
(
Y

(i)
t , Y

(j)
t

)
= θiθjαiαj

c1
c22
t

and

Var
[
Y

(i)
t

]
=
(
θ2
i

(
ai
b2i

+ α2
i

c1
c22

)
+ σ2

i

(
ai
bi

+ αi
c1
c2

))
t.

Proof. We have

Var
[
Y

(i)
t

]
= Var

[
θiG

(i)
t + σiW

(i)

G
(i)
t

]
= θ2

i Var
[
G

(i)
t

]
+ σ2

i Var
[
W

(i)

G
(i)
t

]
since the covariance term is equal to zero due to the zero expectation of the Brownian motion W (i).
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For the covariance, we have
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The parameter set of the generalized αVG model is {θi;σi;αi; ai; bi, i = 1, . . . , N ; c1, c2} leading
to a number of parameters amounting to 5N + 2. However, from the space scaling property of a
Gamma random variable, we clearly see that the model has one redundant parameter. Indeed, we can
scale the parameter c2 to 1 since multiplying c2 by a constant c is equivalent to dividing the parameters
αi’s by c. Moreover, for the sake of coherence, we will impose that the business time G(i)

t increases on
average as the real time t, i.e. we impose that E

[
G

(i)
t

]
=
(
ai
bi

+ αi
c1
c2

)
t = t which is equivalent to

(9)
ai
bi

= 1− αi
c1
c2
.

Hence the number of independent parameters is reduced to 4N + 1: {θi;σi;αi; bi, i = 1, . . . , N ; c1}.
We note that Equation (9) implies the following constraints on the model parameters

(10) bi

(
1− αi

c1
c2

)
> 0, i = 1, . . . , N

to ensure the positivity of the parameters ai’s. If we do not impose any other restrictions, the marginal
characteristic functions (7) depend on all the model parameters which makes impossible the decoupling
of the univariate implied volatility surface calibration and the correlation calibration. Indeed, once the
calibration of the option surfaces is performed, there is no parameter left to calibrate the dependence
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structure. Hence, we can either use only univariate derivatives in the calibration procedure or take
into account a penalty in the option surface calibration which measures the correlation goodness of fit.
However, some additional conditions can be imposed to make the marginal characteristic functions
independent on the model parameter c1. This will lead to the original αVG model proposed by
Semeraro [16].

3.2 The original αVG model

The αVG model proposed by Luciano and Semeraro ([14], [16]) is obtained by imposing the equality

(11) bi =
c2
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∀i = 1, . . . , N

such that the Gamma subordinator G(i) is Gamma distributed: G(i)
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αi
−c1 and the marginal characteristic functions become independent
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2
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2
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t

.

The unitary time change associated to the ith underlying stock, G(i), is then Gamma(c2/αi, c2/αi)
distributed and the ith asset log-return follows a VG(σi, αi/c2, θi) process. The number of free
parameters amounts then to 3N + 1 ({θi;σi;αi, i = 1, . . . , N ; c1}).

Under the reduced setting, the linear correlation between the asset-log returns can be rewritten
as:
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and is directly proportional to the common parameter c1.

3.3 The generalized Sato αVG model

Following the same methodology as in Section 3.1, the characteristic function of the process Yt (2) is
given by:
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The marginal characteristic functions are directly obtained from (13):
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The linear correlation between the asset log-return processes Y (i)
t and Y
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and equal to the correlation under the corresponding Lévy models:
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where
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As under the Lévy two factor models, we can scale the parameter c2 to 1 and, for the sake of
coherence, we will impose that the unit business time G(i) has a unit expectation, i.e. we impose that
E
[
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]
=
(
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+ αi
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)
= 1, leading to condition (9).

We can easily show that under the generalized Sato setting, the asset log-return process Y (i)
t

follows a Sato process, although the self similar distribution on which it is built is not necessarily VG,
but has the following characteristic function:
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Proof. To show that the processes Y (i)
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is a Sato process, we have to show
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G(i) is a self decomposable random variable. The characteristic function
of V (i) can be rewritten as the product of two VG characteristic functions:
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and U
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c1
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αiσi,

1
c1
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)
are two independent VG random variables. Hence, by (4), the V (i)’s are self decomposable since they
are the sum of two self decomposable random variables.

4 The original Sato αVG model

By following the idea proposed by Semeraro and Luciano, we define a reduced (or original) Sato model.
Imposing the constraints bi = c2

αi
, ∀i, the constraint (9) becomes ai = bi−c1 and therefore the marginal

characteristic function (14) becomes

φY (i)(u, t) =

(
1− i

uθit
γi + i12σ

2
i t

2γiu2

bi

)−bi
i = 1, . . . , N.

and the process Y (i)
t then follows a VG Sato process with parameters

{
σi,

1
bi
, θi, γi

}
. Note that this

property can be directly inferred from the subordinator distribution under the reduced setting. Indeed,
since we then have X(i) ∼ Gamma(bi − c1, bi) and αiZ ∼ Gamma(c1, c2αi ), G

(i) is Gamma(bi, bi)-

distributed and the process Y (i)
t is actually a VG Sato process written under its time-changed Brownian

motion decomposition.
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5 Calibration

5.1 Calibration instruments

• Underlying stocks

For the numerical study, we compare the calibration performance of the Sato VG and Lévy
VG two factor models for a period extending from the second of June 2008 until the 30th of
October 2009, including thus the market turmoil period of the end of 2008. We consider a basket
composed of four major stocks included in the S&P500 index, namely apple, Exxon, Microsoft
and Intl. For the calibration we take into account all the liquid quoted call options, i.e. for the
whole sets of maturities and strikes. Since the stocks under investigation are typically dividend
paying stocks and since the options written on them are of American type, we first check whether
it is optimal or not to early exercise the different call options. It is never optimal to early exercise
an American call option with maturity T and strike price K written on a dividend paying stock
if

(16) Di ≤ K (1− exp(−r(ti+1 − ti))) , i = 1, 2, . . . , n− 1

and

(17) Dn ≤ K (1− exp(−r(T − tn)))

where Di denotes the dividend corresponding to the ith ex-dividend date ti, i = 1, . . . , n, t0 <
ti < . . . < tn < T .

If the inequalities (16) and (17) hold, the American call price AC is equal to the corresponding
European call price EC and we can directly apply standard Fourier transform methods such
as the Carr-Madan formula [3] to compute the model call option prices. On the other hand,
if inequality (16) and/or inequality (17) are/is violated, we can approximate the American call
option price in terms of European call option prices written on non dividend paying stock by
making use of Black’s approximation [2]

AC(S0,K, T,Di, ti) = max

(
EC

(
S0 −

n∑
i=1

Di exp(−rti),K, T

)
,EC

(
S0 −

n−1∑
i=1

Di exp(−rti),K, tn

))
.

This approximation rests on the fact that the inequality (16) usually holds, in the contrary to
inequality (17). In other words, if it is optimal to early exercise an American call option, the
early exercise date typically coincides with the last ex-dividend payment date tn.

For each stock we consider, both inequality (16) and inequality (17) are satisfied on the whole
period of time under investigation for all the quoted call options. Actually, we select the four
major S&P500 components as measured by market capitalization which satisfy the non early
exercise conditions, such that we do not need any approximation or more advanced and time
consuming numerical method to compute American call option prices.

• Correlation instruments

The market-implied calibration of the dependence structure usually requires the existence of
a liquid market for multivariate derivatives which is nowadays pretty rare. Hence, the linear
correlations are usually calibrated on the basis of time series estimates (see for instance [13]
or [14]). Nevertheless, this calibration procedure is characterized by two shortcomings: first
the marginals are calibrated under the risk-neutral measure whereas the dependence structure
is calibrated under the historical measure and secondly the historical correlations turn out to
strongly depend on the estimation technique and/or on the length of the time series window.
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However, for any actively traded index, we can infer a correlation index by following the Chicago
Board Options Exchange (CBOE) methodology [7]. Indeed, in July 2009, CBOE started to issue
correlation indices on the S&P500 which are a measure of the expected average correlation for
different time horizons and are computed by

(18) ρCBOE =
σ2

Index −
P∑
i=1

w2
i σ

2
i

2
P−1∑
i=1

P∑
j>i

wiwjσiσj

,

where σIndex and σi denote the volatility of the index and of the ith index component, respectively
and where wi is the weight of the ith index component and is equal to

wi =
PiSi
P∑
i=1

PiSi

,

Pi denoting the price of the ith index component and Si the shares outstanding of the ith index
component. Here we propose to calibrate the dependence structure of the subset of the S&P500
components by using the S&P500 implied correlation indices defined by (18). We note that the
methodology can be applied to any index as long as options written on the index and on its
components are largely traded.
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Figure 1: Evolution of the CBOE S&P 500 implies correlation indices through time.

Figure 1 shows that the correlation index depends on the time horizon, especially during high
volatility regime periods. This term structure of the market correlation is not taken into account
in the proposed models. Nevertheless, to accommodate for this market characteristic, we can
extend the models by considering regime switching between a high and a low level of correlation.

5.2 Calibration procedure

For the calibration of the original models, we follow the same procedure as in [11] and [14] since we can
then dissociate the calibration of the univariate option surfaces and the calibration of the correlations.
On the other hand, the generalized models can not be calibrated by following this methodology since
the marginal characteristic functions (7) and (14) depend on the whole parameter set. Hence, we can
either perform the calibration of the option surfaces and the correlations simultaneously or calibrate
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the whole parameter set on univariate derivatives only. In the former procedure, we will introduce
a penalty function in the objective function to measure the fit of the market correlations. In the
following we describe in details the two calibration procedures.

5.3 The decoupling calibration

The decoupling calibration procedure proposed by Leoni and Schoutens in [11] can be applied for
any multivariate model as long as the marginal characteristic functions are independent on at least
one model parameter since the methodology consists of dissociating the univariate option surface
calibration from the correlation calibration. Hence the calibration might be performed in two successive
steps:

1. calibration of the univariate option surfaces

We first perform a simultaneous calibration of each option surface by using fast Fourier trans-
form techniques such as the Carr-Madan formula ([3]). For a particular choice of the common
parameters ~pc (i.e. the parameters which are included in more than one marginal characteristic
function), we calibrate the idiosyncratic parameters ~pi (i.e. the parameters which only appear
in one marginal characteristic function). We then repeat the procedure for a wide range of the
common parameters. The optimal marginal parameter set ~pm =

{
~pc, ~pi

}
(i.e. the set of both

the common and idiosyncratic parameters) is the parameter set which leads to the best fit of all
the option surfaces.

For the calibration of the marginal distributions, we consider a straightforward multidimensional
extension of the widely used one dimensional root mean square error objective function by taking
the mean of the marginal RMSE functionals:

(19) MRMSE =
N∑
i=1

RMSE(i)

N
=

N∑
i=1

1
N

√√√√√M(i)∑
j=1

(
P

(i)
j − P̂

(i)
j

)2

M (i)
,

where N is the number of underlying stocks, M (i) is the number of quoted options for the
ith stock and P

(i)
j and P̂

(i)
j denote the jth market and model option prices of the ith stock,

respectively. The multivariate weighted RMSE objective function, MRMSE allows to calibrate
separately each option surface. Indeed, we can minimize separately RMSE(i) = RMSE(i)(~pii|~pc),
where ~pii = {θi, σi, αi} and ~pii = {θi, σi, αi, γi} denotes the idiosyncratic parameter set of the
ith underlying under the Lévy and Sato models, respectively. Hence opting for the MRMSE
objective function might turn out to significantly reduce the calibration time, especially for a
large number of underlyings. In the particular case of the original models we consider, the
MRMSE actually reduces to N univariate VG calibrations since the marginal characteristic
functions do not share any common parameter ~pc.

2. calibration of the dependence structure

We fix the marginal parameters ~pm to their optimal value according to the first step and we
calibrate the correlation parameters ~pd (i.e. the parameters which do not influence any marginal
characteristic function, in the present case, ~pd = c1) on the market implied correlations by
minimizing a root mean squared objective function:

(20) RMSEρ =

√√√√ 1
N2−N

2

N∑
i,j 6=i

(ρij − ρ̂ij)2
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where ρij and ρ̂ij denote the market implied and the model correlations between the ith and jth
asset log-returns, respectively. The model correlation ρ̂ij is directly inferred by Equation (8).

5.4 The joint calibration

If no reliable estimate of the dependence structure can be inferred from liquid market quotes, we can
then calibrate the whole parameter set of the generalized models on the univariate option surfaces
only by following the procedure described in the option surface calibration phase of the decoupling cal-
ibration procedure. In other words, we can successively minimize RMSE(i) = RMSE(i)(θi, σi, αi, bi|c1)
and RMSE(i) = RMSE(i)(θi, σi, αi, γi, bi|c1) under the Lévy and Sato models, respectively and repeat
the procedure for different values of the common marginal parameter c1.

On the other hand, a joint calibration procedure of the univariate option surfaces and the corre-
lations is required when the marginal characteristic functions depend on the whole model parameter
set if the correlation matching is a desired feature. It requires an adequate specification of the penalty
function to take into account the correlation matching in the calibration procedure of the option
surfaces. We propose to minimize the following objective function:

(21) MRMSEJ =
N∑
i=1

RMSE(i)

N
+ αρMRMSE∗

√√√√ 1
N2−N

2

N∑
j,k 6=j

(ρjk − ρ̂jk)2,

where ρjk and ρ̂jk denote the market implied and the model correlations between the jth and kth
log-returns, respectively and where MRMSE∗ is the optimal value of the multivariate root mean square
errors obtained by fitting the option surfaces only. The scaling of the correlation goodness of fit by
this factor ensures that both terms of Equation (21) are of the same magnitude order. The parameter
αρ ≥ 0 allows the user to specify the relative importance of the correlation matching; a parameter αρ

equal to 0 indicating that the the correlation calibration is not a desired feature and that the model
is calibrated on the univariate option surfaces only.

6 Numerical results

The calibration of the original and generalized models is performed for a time period ranging from
the 2nd of June 2008 until the 30th of October 2009 with weekly quotes and therefore including the
recent credit crunch. The original models are calibrated by performing the decoupling calibration
procedure described in Section 5.3 whereas the generalized models are calibrated on the univariate
option surfaces only or by including a penalty term which assesses the correlation goodness of fit
(referred to as step 2 ) (see Section 5.4).

6.1 The option surface goodness of fit

The multivariate RMSE (19) which assesses the univariate option surfaces goodness of fit as well
as the VIX volatility index which measures the future expected market volatility over the next 30
calendar days are shown on Figure 2. We observe that the Lévy models and to a larger extent the
Sato models lead to a better fit of the univariate option surfaces than the multivariate Black-Scholes
model. Nevertheless the precision gain obtained by considering more advanced Lévy models than the
Black-Scholes model does not turn out to be significant during the panic wave period characterized
by a high value of the VIX which occurred in the aftermaths of the bankruptcy of Lehman Brothers,
namely from October 2008 until December 2008. On the other hand, the Sato models systematically
outperform the Black-Scholes model (and the Lévy models) in terms of the MRMSE whatever the
level of investor’s fear. These results are thus in line with the fact highlighted by Carr et al. [6] that
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Sato models, unlike Lévy models, are able to reproduce option prices in both the time to maturity
and the strike dimensions. Figure 3 indicates that the generalized models are characterized by a
slightly lower MRMSE than the original models when the former models are calibrated on univariate
option surfaces only. Moreover, taking into account the correlation goodness of fit in the calibration
of the generalized models leads to an option surface fit of roughly the same quality as the original and
generalized models when those are calibrated on option surfaces only.
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Figure 2: Evolution of the global option surface calibration performance of the Lévy models (upper)
and of the Sato models (center) and evolution of the VIX volatility index (lower) through time.

6.2 The correlation goodness of fit

Figure 4 shows the correlation RMSE (20) under the original and generalized Lévy and Sato models. It
is clear that although the original models, unlike the generalized models, have one degree of freedom to
match the market implied correlation, i.e. c1, they are not really able to fit the dependence structure.
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Figure 3: Evolution of the global option surface calibration performance of the Lévy models (upper)
and of the Sato models (lower) through time.
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Indeed, the correlation RMSE, RMSEρ, varies between 37.31 and 77.12 percent under the original
αVG model and between 30.06 and 78.04 percent under the original αVG Sato model for the time
period considered. This gives some evidence against the use of the decoupling procedure to calibrate
the original models and might be explained by two reasons: first there exists only one single parameter
to fit the N2−N

2 linear correlations between the N underlyings and secondly, imposing the constraint
(9) that on average the business clock grows as the real time, implies some additional constraints on
the subordinator parameters. Indeed, in order to ensure the positivity of the parameter ai’s of the
idiosyncratic Gamma subordinators, the following inequalities have to hold:

1− αi
c1
c2
> 0 ∀i = 1, . . . , N,

leading to an upper bound for the set of admissible values for c1: c1 ∈ (0, 1
maxαi

). In the decoupling
calibration, the αi’s are determined in the first step, i.e. during the option surfaces calibration phase.
Hence, the upper bound on the parameter c1 might turn out to severely restrict the range of admissible
values of c1. In order to have some insight in the limitation of the decoupling procedure for the
calibration of the original models, we have a look at the optimal value of the common subordinator
parameter c1 (see Figure 5). We see that, for both the Lévy and Sato original models and for most
of the quoting dates under investigation, the optimal value of the parameter c1 is set equal to the
upper bound 1

maxαi
which in turn limits severely the range of attainable correlations since the linear

correlations are proportional to c1 (see Equation (12) and Figure 7 and Figure 8).
Figure 6 shows the maximal attainable correlation which can be reached by the decoupling

calibration procedure for each pair of asset log-returns. The upper bound on the value of the correlation
gives evidence against the use of the decoupling procedure to calibrate the original models for strongly
correlated underlyings. In this particular case, a more suited calibration methodology would consist
of a joint calibration where the parameters αi’s and c1 are determined simultaneously to minimize an
objective function of the form (21).

Moreover, as it can be seen from Figure 4, including a penalty term assessing the correlation
goodness of fit in the objective function (see Equation (21)) usually allows to significantly improve
the correlation goodness of fit of the generalized models. Indeed, the RMSEρ amounts to less than
5 percent for more than 79 and 71 percent of the quoting dates under the generalized Lévy and
Sato models, respectively. Nevertheless, for some of the trading days, the correlation RMSE remains
significant. This typically occurs more often under the Sato model which might be explained by the
fact that the weight of the correlation term, MRMSE∗ is significantly lower under the generalized
Sato model since they lead to a better fit of the univariate option surfaces than the generalized Lévy
models (see Figure 2). Nevertheless, the correlation goodness of fit can then be improved by assessing
more weight to RMSEρ by increasing the value of the parameter αρ (see Figure 9).

7 Conclusion

This paper proposes a class of multivariate Sato models for option pricing built upon a Sato time
change Brownian motion where the time change consists of a weighted sum of an idiosyncratic and a
common component. We consider the particular case of Gamma subordinators and we distinguish in
between a reduced model where the asset log-return margins are of VG-Sato type and a generalized
model where the margins remain Sato-distributed but not necessarily VG-Sato distributed anymore.
These models can be seen as an extension of the αVG model [16] and of the generalized αVG model [10]
where the Lévy margins are replaced by Sato margins while keeping the same dependence structure.
The numerical study has shown that the proposed Sato models are able to fit univariate option
surfaces quotes both for low and high volatility regime periods and consequently outperform both the
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Figure 4: Evolution of the correlation calibration performance of the Lévy models (upper) and of the
Sato models (lower) through time.
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Figure 5: Evolution of the common subordinator parameter c1 of the Lévy models (upper) and of the
Sato models (lower) through time.
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Figure 6: Evolution of the maximal attainable correlations of the original Lévy model (upper) and of
the original Sato model (lower) through time.
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Figure 7: Evolution of the linear correlations under the Lévy models through time.
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Figure 8: Evolution of the linear correlations under the Sato models through time.
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multivariate Black-Scholes model and the original and generalized αVG models. Moreover, we have
shown that the generalized models can adequately reproduce the market implied correlations when
a penalty term which assesses the correlation goodness of fit is included into the calibration surface
optimizer whereas the original models usually fail to reproduce the market correlations if they are
calibrated by using the decoupling calibration procedure.
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