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Abstract

Both Bayesian and likelihood inference for models for directional data are difficult because typically the density func-
tion contains a normalization constant that cannot be computed in closed form. From a Bayesian perspective in such
cases we resort to the Approximate Bayesian Computation (ABC) methodology, a computational tool that allows us
to approximate posterior distributions when the likelihood function is intractable or unavailable, but it is possible to
sample from the model. In this work we propose to use the scoring rule estimating equation as the summary statistic
in ABC in order to obtain accurate approximations of the posterior distribution for the unknown parameters of a direc-
tional distribution. In particular, we focus on the Hyvärinen scoring rule, which has the property of homogeneity, i.e.
the distribution need only be known up to normalisation. The method is illustrated through examples with simulated
data.
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1. Introduction
In general directional statistics deal with observations on compact Riemannian manifolds. To introduce directional dis-
tributions, let’s consider a random vectorX whose density contains a normalization constant depending on a parameter
θ, with θ ∈ Θ ⊆ Rm, m ≥ 1, given by

f(x; θ) =
1

c(θ)
exp{−h(x; θ)}, (1)

where h(x; θ) is a known function and c(θ) is the normalizing constant. An example of (1) is the p-dimensional Bing-
ham density, given by f(x; θ) = 1

c(θ) exp{−xT θx} , xTx = 1 , x ∈ Rp. One of the major problems for maximum
likelihood estimation in directional models is that the normalizing constant is difficult to evaluate. Recently, Mardia et
al. (2016) proposed, as an alternative, the method of the score matching estimation (Hyvärinen, 2005) on a compact
oriented Riemannian manifold (see also Dawid and Lauritzen, 2005, and Parry et al., 2012), that avoids the need to
work with normalizing constants. Maximum likelihood and score matching estimations can be seen as special cases of
a more general methodology based on proper scoring rules. A scoring rule (see, for instance, Dawid and Musio, 2014,
and references therein) is a special kind of loss function designed to measure the quality of a probability distribution for
a random variable, given its observed value. It is proper if it encourages honesty in the probability evaluation. Among
the most important proper scoring rules are the logarithmic score, and the Hyvärinen score.
Each proper scoring rule determines a divergence and the minimization of the divergence leads to an estimator. When
we use the Kullback-Leiber divergence (associated with the log score), the maximum likelihood estimator is obtained,
while if the divergence is that associated with the Hyvärinen score we have the score matching estimator.
From a Bayesian perspective, when the computation of the likelihood is intractable, but it is easy to simulate from the
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model, an approximation of the posterior distribution can be obtained by Approximate Bayesian Computation (ABC)
techniques (see, e.g. Marin et al., 2012, and references therein). The core idea of ABC is to simulate from the model
for different parameter values, and keep those values that produces simulated datasets that approximately match the
observed data. The most popular ABC approach is to consider an approximate matching of some summary statistics,
evaluated at the observed and simulated data, by means of suitable distances. When the statistics are sufficient for the
parameters of the model, this method leads to the exact posterior distribution as the distance tends to zero. However,
in realistic applications sufficient statistics are not available and a careful selection of data summaries is necessary.
In this work we try to combine these two different methodologies. More precisely, extending results in Ruli et al.
(2016), a scoring rule estimating function will be used as a summary statistic in ABC in order to obtain an accurate
approximation to the posterior distribution for the unknown parameters of directional distributions, whose normaliza-
tion constant is not known in closed form. In particular, because of its homogeneous property, we will consider the
Hyvärinen scoring rule. The method is illustrated through examples with simulated data.

2. Proper scoring rules
A scoring rule is a way of assessing how well a distribution can do on predicting the value of a random variable X .
It assigns a number to every combination of a distribution Q, You quote to represent the uncertantly about X , and the
value x of X that Nature will reveal. So if You quote Q and Nature chooses x, You will obtain the unsatisfactoriness
score S(x,Q). The score is said to be proper (PSR) if, for any distribution P for X , the expected score S(P,Q) =
EX∼PS(X,Q) is minimised by quoting Q = P . Starting from a PSR S, we can define the discrepancy or divergence
of Q ∈ P from P ∈ P as D(P,Q) = S(P,Q)− S(P, P ). For a proper scoring rule D(P,Q) ≥ 0. Examples of PSRs
include the log score, S(x,Q) = − log q(x), where q(·) is the density ofQ with respect to some underlying measure µ.
In this caseD(P,Q) =

∫
dµ(y)·p(y) ln{p(y)/q(y)} is the Kullback-Leibler DiscrepancyK(P,Q). Another important

example is the Hyvärinen score. Let X be a variable taking values in X = Rp. It is defined by

S(x,Q) = ∆ ln q(x) +
1

2
|∇ ln q(x)|2 =

∆
√
q(x)√
q(x)

,

where ∇ denotes gradient, and ∆ the Laplacian operator,
∑q
i=1 ∂

2/(∂xi)
2 on X ; |u|2 = 〈u, u〉, with 〈u, v〉 being the

inner product between vectors u and v, is the squared length of vector u. An important property of this scoring rule is
homogeneity: it is unchanged if q(·) is scaled by a positive constant. In particular, S(x,Q) can be computed without
knowledge of the normalising constant of the distribution Q.
We can generalize the definition of the Hyvärinen scoring rule on a p−dimensional Riemannian manifold M ⊂ Rq
(Dawid and Lauritzen, 2005). For u = u(x) and v = v(x) being real-valued functions onM , the inner product between
u and v is defined by < u, v >= (∇u)T (G(x))−1(∇v), where G(θ) = (gij(θ)), i, j = 1, · · · , p is the metric tensor
on M and G(x))−1 = (gij(x)) is the inverse matrix. A uniform measure on M can be defined in local coordinates by
dµ(x) = (detG(x))1/2dx. Moreover, the Laplace-Beltrami operator is given by

∆u =

p∑
i,j=1

(det(G(x)))−1/2∂/∂xi

[
det(G(x))1/2gij∂u/∂xj

]
,

while the Hyvärinen score on M , has the form

S(x, q) = ∆ log q +
1

2
||∇ log q||2. (2)

3. Estimation
Let {Pθ : θ ∈ Θ}, where Θ is an open subset of Rm, be a parametric family of distributions for X ∈ X . We suppose
given a PSR S on X . Let (x1, . . . , xn) be a random sample from Pθ, and denote by P̂ the empirical distribution of
the sample. We might estimate θ by that value minimising D(P̂ , Pθ), where D is the discrepancy associated with S.
Equivalently, since D(P̂ , Pθ) = S(P̂ , Pθ) − S(P̂ , P̂ ), we minimise nS(P̂ , Pθ), which is the total empirical score,∑n
i=1 S(xi, Pθ). This is equivalent to solve the estimating equation

n∑
i=1

s(xi, θ) = 0, (3)
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where s(x, θ) = ∂S(x, Pθ)/∂θ. This supplies an unbiased estimating equation (see Dawid and Lauritzen, 2005),
thereby leading to an M -estimator. Note that when we use the log score, (3) is just the likelihood equation, and we
obtain the maximum likelihood estimator. We can thus apply standard results on unbiased estimating equations to
describe the properties of the minimum score estimator θ̂S . In particular, in repeated i.i.d. sampling, under broad regu-
larity conditions on the model, the minimum score estimator θ̂S is asymptotically consistent and normally distributed
with mean θ and variance V (θ), where

V (θ) = K(θ)−1J(θ)(K(θ)−1)T ,

with J(θ) = E
[
s(X, θ)s(X, θ)T

]
the variability matrix, and K(θ) = E

[
∇s(X, θ)T

]
the sensitivity matrix. In

contrast to the case for full likelihood, J and K are different in general. The matrix G(θ) = V (θ)−1 is known as
the Godambe information matrix (see Dawid at al. , 2016). The sandwich form of V (θ) is due to the failure of the
information identity since, in general, K(θ) 6= J(θ). In the following we will denote by θ̂H the Hyvärinen estimator
(i.e. the minimum score estimator based on the Hyvärinen scoring rule).
In the case in which the density belongs to the canonical exponential family, f(x) = f(x; θ) ∝ exp

{
θT t(x)

}
, with θ

the p-vector of natural parameters, t(x) = (t1(x), · · · , tp(x)) is a vector of sufficient statistics and tl(x) (l = 1, · · · , p)
are twice continuously differentiable w.r.t. x, Mardia et al. (2016) showed that the unbiased estimating equation based
on the Hyvärinen score in the manifold M reduces to

s(θ) = Wθ − d, (4)

with W and d having components

wl1l2 = E (< tl1(x), tl2(x) >) , dl = −E (∆tl(x)) (l, l1, l2 = 1, · · · , p). (5)

It can be shown that θ̂H ∼̇ N(θ, V (θ)), where

V (θ) = K(θ)−1J(θ)(K(θ)−1)T ,

with
J(θ) = (Wθ − d)(Wθ − d)T and K(θ) = W

(see Dawid at al. (2016)).

4. ABC methodology
In a Bayesian framework let π(θ) be a prior distribution for the parameter θ ∈ Θ ⊆ Rm, let L(θ) = L(θ;x) =
f(x; θ) be the likelihood function based on the data x and let π(θ|x) ∝ π(θ)L(θ) be the posterior distribution of
θ. Suppose that the likelihood function is intractable, for example for computational reasons. The main objective
of ABC algorithms is to approximate the posterior distribution when it is easy to simulate from the density function
f(x; θ). Let η(x) ∈ S ⊂ Rp be a vector of summary statistics (not necessary sufficient), xobs be the observed data,
ρ(η(x), η(xobs)) a metric distance between η(x) and its observed value η(xobs), and ε a tolerance threshold. The ABC
methods approximates π(θ|x) by

πε(θ|η(xobs)) =

∫
S
πε(θ, η(x)|η(xobs))dη

and
πε(θ, η(x)|η(xobs)) ∝ π(θ)f(x; θ)IA

ε,xobs
(x),

where I is the indicator function of the set Aε,xobs(x) =
{
x : ρ(η(x), η(xobs)) ≤ ε

}
. The basic idea of the ABC

algorithm relies on simulation by the mixture representation method consisting in generating, say, N values of θ from
π(θ) and using them to generate the corresponding N values of η from π(x|θ) at the simulated θ. We accept all values
of θ such that ρ(η(x), η(xobs)) < ε. For ε→ 0 the ABC method has been proven to return a consistent estimator of the
posterior π(θ|η(xobs). Moreover, if η is sufficient and ε→ 0, then πε(θ|η(xobs)→ π(θ|x). Ruli et al. (2016) propose
a variant of the ABC in which a scaled composite likelihood score function, evaluated at the observed composite
likelihood estimate, is used a summary statistic (ABC-cs). Generalizing the idea developed in Ruli et al. (2016) in this
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paper we propose to use as a summary statistic in ABC a rescaled version of the Hyvärinen score estimator (ABC-H)
(see Algorithm 1).

Algorithm 1 A sample (θ1, · · · , θN ) from πε(θ|ηH(xobs))

Given the observed data xobs compute the Hyvärinen estimate θ̂obsH .
Compute B(θ̂obs).
for i = 1 to N do

repeat
draw θ∗ ∼ π(θ)
draw x ∼ f(x; θ∗)

until ρ(ηH(θ̂obs, x), ηH(θ̂obs, xobs)) ≤ ε
set θi = θ∗

end for

We denote by H(θ, x) the estimating equation based on the Hyärinen score for θ , θ̂obsH is the Hyvärinen estimate when
x = xobs, and we define the rescaled score statistic ηH(θ̂obs, x) = B(θ̂obs)−1H(θ̂obs, x) where the matrix B(θ) is
such that J(θ) = B(θ)B(θ)T . We have applied this algorithm to simulate from the posterior distribution when data
are generate from a directional model using as ρ the Euclidean distance. The following theorem holds:

Theorem 0.1 The ABC-H algorithm with the rescaled score statistic η(θ̂obs, x), as ε −→ 0, leads to an approximate
posterior distribution with the correct curvature and it is invariant to reparametrisations.

The proof follows the same line as that of Theorem 3.2 of Ruli et al. (2016). The adjustment scale of the score statistic
is necessary in order to recover the information identity, i.e. the correct curvature, as well as invariance to reparametri-
sations.

5. Examples
In this section we provide simulation results to assess the performance of this new methodology. We discuss two ex-
amples of directional distributions that belong to the exponential family and for which it is then possible compute the
sufficient statistics and apply also the “classical” version of the ABC algorithm, that we have used for comparison.

5.1 The von Mises-Fisher distribution
This example focus on inference for the parameters of the von Mises-Fisher density in dimension 3. In general, the
von Mises-Fisher density on Sp−1 is defined as

f(z; θ) ∝ exp(−θT z),

where t(z) = (z1, · · · , zp)T is a vector of sufficient statistics and θ = kµ is a vector of parameters where k ∈ R and
µ ∈ Rp is such that ‖µ‖ = 1. In the circle it is convenient to write µ = (cos(τ), sin(τ)) in polar coordinates. Note
that, if p = 2, and the data are represented in polar coordinates (z1h, z2h) = (cos(φh), sin(φh)), (h = 1, · · · , n), the
sufficient statistics are t1(φ) = cos(φ) and t2(φ) = sin(φ). W and d (defined in (4) and (5 )) are equal to

w11 =
1

2
(1− C̄2), w12 = −1

2
S̄2, w22 =

1

2
(1 + C̄2),

and d1 = C̄, d2 = S̄ where C̄ = 1
n

∑n
h=1 cos(φh) , S̄ = 1

n

∑n
h=1 sin(φh),

C̄2 =
1

n

n∑
h=1

cos(2φh) S̄2 =
1

n

n∑
h=1

sin(2φh) R̄2 =
√
C̄2

2 + S̄2
2 .

The score estimator becomes

τ̂H = atan2{C̄S̄2 + S̄(1− C̄2), C̄(1 + C̄2) + S̄S̄2} (6)
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Figure 1: Samples drawn from the parameters k and τ using the ABC − H posterior (left panels) and the
“classical” ABC posterior (right panels) with ε = 0.01. The horizontal lines represent the true parameter
values.
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k̂H =
2
√
R̄2(1 + R̄2

2) + 2(C̄2 − S̄2)C̄2 + 4C̄S̄S̄2

(1− R̄2
2)

. (7)

As an illustration of our methodology we simulate a sample of n = 100 drawn from the von Mises-Fisher density in
S1 with k = 4, τ = 0. We consider N = 105 final samples obtained with ε fixed at 0.01% quantile of the observed
euclidean distance. The boxplots of marginal posterior approximations, computed both with the “classical” ABC and
with the ABC-H, are shown in Figure 1.

5.2 The Bingham distribution
In general, the Bingham density on Sp−1 is defined as

f(x;A) =
1

C(A)
exp

{
−xTAx

}
, s.t. xTx = 1, with x ∈ Rp.

Here A is a symmetric p × p matrix. Let A = ΓΛΓT be the spectral decomposition of A. The maximum likelihood
estimator of Γ is the matrix of eigenvectors of the sum and product matrix

∑
j xjx

T
j . If X ∼ Bingham(A) then Z =

ΓTX ∼ Bingham(Λ), where Γ represents the orientation parameters and Λ = diag(λj) represent the concentration
parameters, with

∑n
j=1 λj = tr(A) = 0. Taking A = Λ, then xTΛx =

∑p−1
j=1 λj(x

2
j − x2p), with the constraint∑n

j=1 λj = tr(A) = 0. C(Λ) =
∫
x∈Sp−1 exp

{
−
∑p−1
i=1 λix

2
i

}
dSp−1(x). W and d for i, j = 1, · · · , p − 1, are

defined as

wij =

(4/n)
∑
k

(
x2ik + x2pk −

(
x2ik − x2pk

)2)
if i = j

(4/n)
∑
k

(
x2pk −

(
x2ik − x2pk

)(
x2jk − x2pk

))
otherwise,

di = −(2p/n)
∑
k

(
x2ik − x2pk

)
(see Mardia et al., 2016)). As an illustration of our methodology we have applied the “classical” ABC and the ABC-H
methods in the case in which p=3. We simulate a sample of n = 350 drawn for the Bingham density with λ1 = 6,
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Figure 2: Samples drawn from the parameters λ1 and λ2 using the ABC −H posterior (left panels) and the
“classical” ABC posterior (right panels) with ε = 0.0025. The horizontal lines represent the true parameter
values.
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λ2 = −1. We consider N = 3×105 final samples obtained with ε fixed at 0.0025% quantile of the observed euclidean
distance. The boxplots of marginal posterior approximations are shown in Figure 2.

6. Conclusions
Our results suggest that combining the ABC approach with the Hyvärinen scoring rule estimating equation is a promis-
ing approach which avoids the calculation of the normalizing constant. Further works will be devoted to investigate
the method in a real case study and for other directional models.
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