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Abstract

In this work we aim at estimating the size of a population of interest based on a set of administrative sources
to be used as capturing lists in a capture-recapture setting, that is, to estimate the number of units not
captured by any list. In using administrative data in this context, the most relevant problems we encoun-
tered are the non-independence of the captures of the same unit in different lists/sources, and the presence of
out-of-scope units in the lists. In order to deal with these problems, we propose a Bayesian latent class model.
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1. Introduction

In recent years, National Statistics Institutes are more and more investing in the possibility of producing
statistics based solely on administrative data. In this work our goal is to estimate the size of a target
population of interest, based on a set of administrative sources to be used as capturing lists in a capture–
recapture setting.
In using administrative data in this context, the most relevant problems one encounters are:

• The non independence of the captures of the same unit in different lists/sources;

• The presence of out–of–scope units in the lists (“false captures”).

As far as the first issue is concerned, the use of loglinear models is typical in situations where each list has
a different capture probability and captures of the same unit in different lists are not independent. For the
latter, we consider a situation where none of the sources can be considered as error free, so that we cannot
utilize a supervised model to estimate the probability of a unit of being out–of–scope. For this reason, we
deal with the problem of false captures in an unsupervised way, by including in our loglinear models a latent
binary variable X identifying the units belonging to our target population (X=1), and the out–of–scope units
(X=0). We are only interested in the total population count conditionally on X=1.
This setting has been studied in [Di Cecco et al. 2016] in a non–Bayesian approach. The choice of developing
a Bayesian approach to that problem is essentially due to two reasons: firstly, as we will see in the next
sections, if we restrict our loglinear models to be decomposable, a Bayesian approach is straightforward.
Secondly, in the previous work we experienced a great sensitivity of the estimates to model selection, and
in a Bayesian approach we have several ways to overcome this difficulty. For a start, we can easily obtain
an interval estimation of the population size, whereas this task would require a complex use of Bootstrap
sampling in a frequentist approach. Furthermore, (although not reported in the present paper), we could
adopt a more thorough technique in which the uncertainty about the correct model is explicitly included,
that is, we can consider model averaging where a prior is placed over a set of possible models (see [Madigan
and York 97] for an application in capture–recapture).
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This paper is structured as follows: in Section 2 the model is presented. In Section 3 we focus on decompos-
able loglinear models to introduce the prior distributions. In Section 4 the MCMC algorithm to sample from
the posterior distribution of N , the total population size parameter, conditionally on X =1 is detailed. In
Section 5 we present some simulation results.

2. The model

Let us introduce some notation. Consider k lists (or capture occasions). Let Yi be the random variable
indicating whether a unit has been captured by the i–th source (i.e., is listed on the i–th list):

Yi =

{
1 if a unit is captured in the i–th list;
0 otherwise.

Let Y = (Y1, . . . , Yk), be the r.v. representing the capture history of a unit, and let {P (Y = y) = py}y∈{0,1}k
be the relative distribution. Let X be the latent variable identifying the units belonging to our target
population:

X =

{
1 if a unit belongs to the target population;
0 otherwise.

We observed nobs units, and y
obs

is the set {y
j
}j=1,...,nobs

of all the capture histories observed on the nobs
units. ny is the number of units having capture history y, nx,y of which belong to latent class x, such that∑
x∈0,1 nx,y = ny and

∑
y ny = nobs.

The units having capture history y = 0 = (0, . . . , 0) are unobserved and the relative count n0 has to be
estimated. The total population size, denoted as N , is consequently equal to nobs + n0.
We are interested in estimating the dimension of our target population, let us denote it as N1, i.e., we want
to estimate the number of units (both captured and uncaptured) for which X = 1. In fact, as a result, we
will derive the posterior distribution of N1, π(N1 | yobs).
We have N1 =

∑
y n1,y. That is, N1 equals the sum of the number of in–scope units for each capture

history, including the units not captured in any list. Let N0 =
∑

y n0,y represent the overcoverage, so that

N0 +N1 = N .
The likelihood function is:

L(py ; ny) ∝
∏
y

p
ny

y =
∏
y

(∑
x

pxpy|x

)ny

, (1)

where py is the probability of observing capture history y in a unit, and py|x is the same probability conditional
on X = x.
To illustrate our examples throughout the paper, we will refer to the decomposable model with four sources
Y = (A,B,C,D) of Figure 1 for which py = pabcd =

∑
x px pab|x pcd|x.

A

B

X

C

D

Figure 1: A simple decomposable graph with 5 nodes (4 sources and a latent variable).
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3. Prior distributions

A model is said graphical if its dependency graphG exhaustively defines the structure of its joint distribution,
i.e., if the joint distribution has no constraint other than those defined byG. Note that, in a graphical loglinear
model, this is equivalent to say that the model includes all and only the interaction terms represented by the
cliques of G, and it will be denoted as π(G). A model is said decomposable iff its dependency graph G is
chordal, i.e., if any cycle of G of four or more nodes has a chord.
Consider a decomposable graphical model and let {C1, . . . , Cg} be the maximal cliques of the associated graph
G, (

⋃g
i=1 Ci = G). Then, we have an ordering {Cσ(1), . . . , Cσ(g)} of the set, such that, having defined the set

of separators (S2, . . . ,Sg) as

Si = Cσ(i) ∩
i−1⋃
j=1

Cσ(j) i = 2, . . . , g,

we have that

• each separator Si is a clique of G;

• each Si is contained in one of the maximal cliques Cσ(j), σ(j) < i.

As a consequence, the joint distribution can be written in the following form:

pG =

∏g
i=1 pCi∏g
j=2 pSj

, (2)

where p over a (sub)graph is to be intended as the (marginal) distribution over the variables included in the
(sub)graph.
The joint probability can also be described as a product of conditional distributions in several ways (we will
use the term “conditional representation” of the model). For example, denoting the conditional distribution
pCi
pSi

as pCi|Si (with a slight abuse of notation), we can write the joint distribution as

pC1

g∏
i=2

pCi|Si .

In our models the latent variable X interacts with all other variables, so X is included in all maximal cliques
and in all separators Si. Then, pC1 can be written as pXpC1|X . As a consequence, we can always write a
conditional representation of pG as follows:

pXpC1|X

g∏
i=2

pCi|Si (3)

Madigan and York (1997) present a Bayesian approach to a class of capture–recapture models substantially
equivalent to (2), but with no latent variable X. They propose the use of a class of prior distribution known as
Hyper–Dirichlet which is conjugate to model (2) and has the property of being closed under marginalization
(see also Dawid and Lauritzen, 1993). We preferred the conditional representation (3) as it is more natural
in this context where the probability conditioned on X have a clear meaning in terms of true/false captures
and under/overcoverage.
We denote as Θ the parameters of distribution (3):

Θ =
(
PX , PC1|X , PC2|S2 , . . . , PCg|Sg

)
.

We define a prior distribution on the parameters Θ as follows: for each PCi|Si and for each value of Si we
set a Dirichlet distribution with no further restriction. These Dirichlet distributions are independent of each
other, and it is not hard to see that this class of priors is conjugate our model. In fact, for each distribution
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PCi|Si the corresponding Dirichlet is defined by the parameters αy
C

defined for each possible combination of

values yC ∈ {0, 1}
|C| of the variables in C. Hence, we have a prior

π(Θ) ∝
g∏
i=1

∏
y

P
αyCi

−1

Ci|Si

which is conjugate to model (3).
For example, in the model of Figure 1, we have C1 = {A,B,X}, C2 = {C,D,X}, S2 = {X}, and pG =
px pC1|x pC2|S2 . We have Θ = (PX , PAB|X , PCD|X), and the following priors:

PX ∼ Beta(αX0 , α
X
1 ) PAB|X ∼ Dir(α

AB|X
ab|x ), (x = 0, 1) PCD|X ∼ Dir(α

CD|X
cd|x ), (x = 0, 1)

π(Θ) ∝
∏
xabcd

Pαx−1
x P

αab|x−1
ab|x P

αcd|x−1
cd|x

It remains to set a prior distribution over n0, or, equivalently, over N . In accordance with the literature on
Bayesian capture–recapture, we will consider the following options:

• Jeffreys’ prior, which in this case is: π(N) ∝ 1/N ;

• Poisson distribution, eventually together with a hyper prior over its parameter: N ∼ Poi(λ), λ ∼
Gamma(α, β);

• Rissanen’s distribution (Rissanen (1983)) which is always proper and is given by π(N) ∝ 2 log∗(N) ,
where log∗(N) is the sum of the positive terms in the sequence {log2(N), log2(log2(N)), . . .}.

We further hypothesize that the prior distributions over N and Θ are independent of each other.

4. MCMC algorithm

In this section we detail the steps of a Gibbs–based MCMC algorithm to sample from the posterior distribution
of N1.
At iteration (t+ 1)

1. sample all parameter Θ(t+1) from their posterior conditional distributions which are Dirichlet distri-
butions;

2. sample n
(t+1)
x,y from π(Nx,y |Θ(t+1),y

obs
) for all y 6= 0,

N
(t+1)
x,y ∼ Bin

(
ny, p

(t+1)
x|y

)
where px|y =

px,y∑
x px,y

;

3. sample from π(N,Nx,0 |Θ,yobs) = π(N |Θ,y
obs

) π(Nx,0 |N,Θ,yobs)
To do this, first we notice that

π(N |Θ,y
obs

) = π(N |Θ, nobs) =
π(N)

π(nobs |Θ)
π(nobs |N,Θ)

∝ π(N)

(
N

nobs

)
pN−nobs
0 (1− p0)nobs (4)

where p0 =
∑
x px,0,

and
π(Nx,0 |N,Θ,y obs) ∼ Bin

(
N − nobs, px|0

)
. (5)

Then, if we choose π(N) ∝ 1/N , we simply have to

• sample N (t+1) from NegBin
(
nobs, 1− p(t+1)

0

)
;
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• sample n
(t+1)
x,0 from Bin

(
(N (t+1) − nobs), p(t+1)

x|0

)
.

If we refer to the example of Figure 1, the first step consists of the following three steps:

• sample p
(t+1)
x from π

(
PX |Nx,y, Nx,0, N,yobs

)
,

P
(t+1)
X ∼ Beta

(
n
(t)
x + αx

)
where n

(t)
x =

∑
y 6=0 nx,y + nx,0;

• sample p
(t+1)
ab|x from π

(
PAB|X |Nx,y, Nx,0, N,yobs

)
,

P
(t+1)
AB|X ∼ Dir

(
n
(t)
abx + αab|x

)
where n

(t)
abx =

∑
y:(A=a,B=b)

nx,y;

• sample p
(t+1)
cd|x from π

(
PCD|X |Nxy, Nx0, N,yobs

)
,

P
(t+1)
CD|X ∼ Dir

(
n
(t)
cdx + αcd|x

)
where n

(t)
cdx =

∑
y:(C=c,D=d)

nx,y;

and, in the second step, we can explicitly write px|y as

p
(t+1)
x p

(t+1)
ab|x p

(t+1)
cd|x∑

x p
(t+1)
x p

(t+1)
ab|x p

(t+1)
cd|x

.

The above algorithm becomes slightly more involved if a Poisson or Rissanen prior instead of 1/N are adopted
for N . In particular, we include in step 3 above a Metropolis-Hastings step (Metropolis-Hastings-within-Gibbs
algorithm), to sample a value N (t+1) from π(N |Θ,y

obs
). In practice, this step presented no particular dif-

ficulty, as different choices for the proposal distribution (Gaussian, uniform,...) appear to lead to negligible
differences in the results.

5. Simulation

In this section we report the results of a simulation to empirically assess the estimation algorithm.
Once again, we considered the example of Figure 1. We considered two scenarios: in the first one (reported
in Figure 2), the model generating the data, characterised by the interaction cliques [AX], [BX], [CDX],
coincides with the estimating model. In the second scenario (reported in Figure 3) we test the robustness
of the model to misspecification by generating the data from a model [ABX], [CDX] and estimating it with
the model [AX], [BX], [CDX]. For each scenario we generated two datasets with two different population
size: one with N = 500, and one with N = 1, 000, 000. The parameters of the generating model are such
that 40% of the total population size are false captures, and the rate of unobserved units (both in–scope and
out–of–scope) is 23%. In the generating model of Scenario 2, A and B have a correlation of about 0.6 both
under X = 1 and X = 0, while they are conditionally independent in the estimating model. We set non
informative priors for all Dirichlet (all parameters α equal to 1), and test various prior distributions for N .
We just reported the results for the informative Poisson distribution having parameter λ equal to the true
value of N , and the non–informative prior 1/N . All other priors give results in between these two.
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Figure 2: Posterior distribution of N1 in Scenario 1. Results for Jeffreys’prior (top graphs) and
Poisson prior with λ = N (bottom graphs). The orange line indicates the true value of N1; the blue
line the Maximum Likelihood Estimate of N1.

Figure 3: Posterior distribution of N1 in Scenario 2. Results for Jeffreys’prior (top graphs) and
Poisson prior with λ = N (bottom graphs). The orange line indicates the true value of N1; the blue
line the Maximum Likelihood Estimate of N1.
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