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Definition of Machine Learning
Machine learning (ML) is a subset of artificial intelligence that empowers 
computers to learn and make predictions or decisions from data without 
explicit programming. 
It involves the development of algorithms that iteratively analyze data, 
identify patterns, and make predictions/decisions. 
These algorithms are trained using vast datasets to recognize relationships 
and trends, enabling systems to make predictions, classify information, or 
take actions based on new, unseen data.
ML has gained tremendous popularity in various fields. 



Types of Machine Learning 
Supervised learning: where models learn from labeled data to make predictions or 
classifications. 

Unsupervised learning discovers hidden patterns within unlabeled data, useful in 
clustering and dimensionality reduction. 

Reinforcement learning teaches agents to make decisions by trial and error, valuable in 
autonomous systems. 

Semi-supervised learning combines labeled and unlabeled data to make predictions. 

Transfer learning uses knowledge from one task to aid another.

Self-supervised learning generates labels from data itself. 





Data Imbalance
Data imbalance is a common and critical challenge in the field of machine learning. 

It refers to a situation where the distribution of classes in a dataset is highly skewed, with one class significantly 
outnumbering the other(s). 

This issue can manifest in various real-world scenarios, such as fraud detection, medical diagnosis, text classification, 
and image recognition.

The consequences of data imbalance are substantial and can have a profound impact on the performance of machine 
learning models. 

Machine learning algorithms are typically designed to optimize overall accuracy, which means they tend to favor the 
majority class.

 As a result, the minority class is often underrepresented in the model's learning process, leading to skewed predictions 
and poor generalization to the minority class.



Imbalanced Data Examples





In practical terms, models trained on imbalanced datasets may exhibit a high accuracy rate, but they 
are often ineffective at identifying and correctly classifying instances of the minority class. 

In applications like fraud detection or medical diagnosis, this could result in undetected fraudulent 
transactions or missed critical diagnoses.

To address the challenges posed by data imbalance, various techniques and strategies have been 
developed. 

These methods aim to rebalance the dataset, adjust the model's learning process, or use specialized 
evaluation metrics that better reflect the performance on imbalanced data. 

The selection of the most appropriate approach depends on the specific problem, the dataset, and the 
desired outcome. 

In this talk, we will explore different techniques for handling data imbalance in machine learning and 
discuss when and how to use them effectively.



 Consequences of Imbalance Data

● Bias: Imbalanced data can lead to model bias, where the model becomes 
overly influenced by the majority class. It may struggle to make accurate 
predictions for the minority class.

● High Accuracy, Low Performance: A model trained on imbalanced data may 
appear to have high accuracy but may perform poorly on minority classes, 
which are often the ones of greater interest.

● Missed Insights: Data imbalance can result in the loss of important insights 
and patterns present in the minority class, leading to missed opportunities 
or critical errors.

● Missclassifying an example of fraud or disease can be very costly! 





Approaches to Address Data Imbalance

1. Data-Level Methods:
● Oversampling
● Undersampling
● Combined Resampling



2. Algorithm-Level Techniques:
● Make the model more robust to class imbalance without changing the distribution of the 

training data. 
● Some machine learning algorithms inherently handle imbalanced datasets better than others. 

For example, tree-based models like Random Forest and ensemble methods like AdaBoost 
often perform well with small imbalanced data. 

● Building ensembles of multiple models can enhance predictive performance on imbalanced 
datasets.

● Anomaly Detection: In cases of extreme imbalance, treating the minority class as anomalies 
and using anomaly detection techniques, such as One-Class SVM or Isolation Forest, can be 
effective.

3. Cost-Sensitive Learning:
● Assigning different misclassification costs to classes can encourage the model to focus on the 

minority class. This is particularly useful when the misclassification costs are not equal, and 
the consequences of errors vary between classes.



4. Evaluation Metrics:

● When working with imbalanced datasets, it's important to use appropriate 
evaluation metrics. 

● Common metrics include:
● Precision: The proportion of true positive predictions among all positive predictions.
● Recall (Sensitivity): The proportion of true positive predictions among all actual positives.
● F1-Score: The harmonic mean of precision and recall.
● AUC-ROC (Area Under the Receiver Operating Characteristic Curve): Measures the 

trade-off between true positive rate and false positive rate.
●  Matthew’s Correlation Coefficient (MCC)



5. Hybrid Methods:

● Combining multiple techniques and approaches can provide robust solutions for handling 
data imbalance. For instance, combining resampling with algorithm-level adjustments and 
cost-sensitive learning can yield improved results.

The choice of which approach to use depends on the specific problem, the 
characteristics of the dataset, and the goals of the machine learning task. 

It is often necessary to experiment with different techniques and evaluate their 
impact on model performance using appropriate evaluation metrics to determine 
the most effective approach for addressing data imbalance.



1. Resampling Techniques for Handling Data Imbalance
Resampling techniques are a common set of strategies used to address data imbalance in 
machine learning. 

These techniques involve modifying the dataset by either increasing the number of minority 
class samples (oversampling) or reducing the number of majority class samples 
(undersampling). Here are some key resampling techniques:

1. Oversampling:
● Random Oversampling: In this method, random instances from the minority class are duplicated until a 

more balanced distribution is achieved. While this can balance the class distribution, it may lead to 
overfitting.

● SMOTE (Synthetic Minority Over-sampling Technique): SMOTE generates synthetic instances for the 
minority class by interpolating between neighboring instances. This approach creates new, realistic data 
points and helps prevent overfitting compared to random oversampling.







Advantages of Oversampling:

● It mitigates class imbalance, reducing the model's bias towards the majority class.
● It can improve the model's ability to correctly classify instances from the minority class.
● Oversampling is relatively easy to implement and can be combined with other techniques 

for further enhancement.

Considerations and Potential Challenges:

● Overfitting: Random oversampling may lead to overfitting if it significantly increases the 
number of minority class instances.

● Increased Computational Load: Generating synthetic instances in SMOTE can increase 
the computational load, especially for large datasets.

● Evaluation Metrics: After oversampling, it's essential to use appropriate evaluation 
metrics like precision, recall, and F1-score, as accuracy alone may not provide a complete 
picture of model performance.



When to Use Oversampling:

Oversampling is beneficial when you want to balance the class distribution in a 
dataset with an imbalanced distribution and when there's a concern that the 
minority class may be underrepresented during model training. 

It is commonly used in tasks such as fraud detection, medical diagnosis, and 
other applications where the cost of false negatives is high.



B. Undersampling

Undersampling is a resampling technique used to address data imbalance in 
machine learning. 

It involves reducing the number of instances in the majority class, which is the 
class with more examples, to create a more balanced dataset. 

The primary objective of undersampling is to prevent the model from being 
overwhelmed by the majority class and to ensure that the minority class is given 
equal importance in the learning process.

 





Methods of Undersampling:

1. Random Undersampling: In this method, a random subset of instances from the majority 
class is selected and retained, effectively reducing the number of majority class instances. 

While this technique can help balance the class distribution, it may result in the loss of 
potentially valuable information from the majority class.

2. Tomek Links: Tomek links are pairs of instances, one from the minority class and one 
from the majority class, that are each other's nearest neighbors.

 Removing the majority class instances in these pairs helps create a clearer separation 
between the two classes, potentially improving classification performance. 

This method is a selective undersampling technique.





Advantages of Undersampling:

● It mitigates class imbalance, reducing the dominance of the majority class in the learning 
process.

● Undersampling can make model training faster and more computationally efficient 
because the dataset is smaller.

● In some cases, it can lead to improved interpretability of the model.

Considerations and Potential Challenges:

● Information Loss: Random undersampling can lead to a significant loss of data and 
potentially valuable information from the majority class.

● Reduced Model Generalization: When the majority class is undersampled, the model may 
have less data to learn from and may not generalize well to new, unseen data.

● Choice of Instances: Care must be taken when selecting instances for removal. Random 
undersampling might inadvertently remove informative instances, and Tomek links may 
not always be straightforward to identify in complex datasets.



C. Combining Resampling Techniques

Combining resampling techniques is a powerful strategy for addressing data 
imbalance in machine learning.

 It involves using a combination of oversampling and undersampling methods to 
create a balanced dataset. 

By striking a balance between the two, this approach aims to mitigate the 
drawbacks of each technique while leveraging their advantages.

● Sometimes, using both oversampling and undersampling in combination can lead to a more 
balanced dataset. For instance, you can oversample the minority class and simultaneously 
undersample the majority class. The aim is to strike a balance between preserving 
information and mitigating class imbalance.



Methods of Combining Resampling Techniques
1. SMOTEENN: SMOTEENN combines SMOTE (Synthetic Minority Over-sampling 

Technique) with Edited Nearest Neighbors (ENN). Here's how it works:
● SMOTE generates synthetic instances for the minority class.
● ENN then identifies and removes noisy or misleading instances from both classes.
● The result is a dataset that has been oversampled with synthetic instances while simultaneously 

reducing the number of majority class instances.
2. SMOTETomek: SMOTETomek combines SMOTE with Tomek links, The process is 

as follows:
● SMOTE generates synthetic instances for the minority class.
● Tomek links are identified, and majority class instances involved in Tomek links are removed.
● The result is a dataset that combines oversampling of the minority class with the removal of noisy 

majority class instances.



Benefits of Combining Resampling Techniques
● Balanced and Informative Dataset: Combining oversampling and undersampling can 

result in a balanced dataset that retains relevant information from both the majority and 
minority classes. It strikes a balance between addressing class imbalance and reducing the 
risk of overfitting.

● Reduced Risk of Overfitting: While oversampling can potentially lead to overfitting, 
combining it with undersampling helps control this issue by removing some majority class 
instances.

● Improved Model Generalization: By providing the model with a dataset that better 
represents both classes, combining resampling techniques can improve the model's 
generalization to unseen data.

● Enhanced Model Performance: Models trained on balanced, informative datasets often 
demonstrate better performance, particularly when working with imbalanced data.



Considerations:

● The choice of combining resampling techniques should be guided by the 
characteristics of the dataset and the specific problem. It may not be the best 
approach for all situations.

● Depending on the problem, you can also experiment with different 
combinations of oversampling and undersampling techniques to find the 
most effective balance.

● Care must be taken when selecting and fine-tuning the specific resampling 
methods and their parameters to achieve the desired balance and model 
performance.



When to use Combining Resampling Techniques
Combining resampling techniques is particularly beneficial when you want to 
strike a balance between addressing data imbalance and reducing the risk of 
overfitting.

 It is often used in scenarios where the choice between pure oversampling or 
undersampling is not clear-cut, and a combination of the two may offer the best 
results.

Ultimately, the choice of resampling techniques, whether combined or 
standalone, should be based on a thorough understanding of the dataset, 
problem requirements, and the goals of the machine learning task.



2. Algorithm-Level Techniques for Handling Data Imbalance 
In addition to resampling techniques, algorithm-level methods are another set of strategies used to 
address data imbalance in machine learning. 

These techniques involve adjusting the algorithms themselves to handle imbalanced datasets more 
effectively. Here are some key algorithm-level techniques:

1. Class Weighting:
● Many machine learning algorithms allow you to assign different weights to different classes. By assigning higher weights 

to the minority class and lower weights to the majority class, you can instruct the model to pay more attention to the 
minority class during training. This is especially useful for algorithms like logistic regression and support vector 
machines.

2. Cost-Sensitive Learning:
● Cost-sensitive learning is a more advanced version of class weighting. It involves explicitly assigning different 

misclassification costs to classes. Algorithms are then trained to minimize the overall cost, which can be skewed toward 
the minority class. This approach encourages the model to focus on correctly classifying the minority class, even if it 
results in more false positives in the majority class.



3. Algorithm Selection:
● Some machine learning algorithms are naturally better suited to handling imbalanced data. For example, 

tree-based models like Random Forest and ensemble methods like AdaBoost are often robust choices for 
imbalanced datasets. These models can handle class imbalance by design, as they partition data into subsets 
based on class and make decisions independently in each subset.

4. Threshold Adjustment:
● By modifying the classification threshold, you can control the trade-off between precision and recall in a 

binary classification problem. Lowering the threshold can increase recall, making the model more sensitive to 
the minority class, albeit at the cost of precision.

5. Anomaly Detection:
● For extreme class imbalance, you can treat the minority class as anomalies and employ specialized anomaly 

detection techniques. Methods like One-Class SVM, Isolation Forest, and Local Outlier Factor are designed to 
identify rare and unusual instances, making them well-suited for this scenario.



When to Use Algorithm-Level Techniques:

Algorithm-level techniques are particularly beneficial when you want to work with imbalanced data without 
modifying the dataset itself. You may choose these techniques when:

● Resampling techniques are not suitable due to dataset size limitations or concerns about information loss.
● You want to retain the original data distribution but need the model to better adapt to the imbalanced nature 

of the data.
● You prefer algorithms that inherently handle class imbalance without additional preprocessing steps.

These techniques can be used in conjunction with other approaches, such as resampling or combining resampling 
methods, to further enhance model performance on imbalanced datasets.

The choice of which algorithm-level technique to use depends on the specific problem, the machine learning 
algorithm in use, and the desired model behavior. 

Experimentation and thorough evaluation using appropriate metrics are essential to determine the most effective 
approach for addressing data imbalance in your specific scenario.



Algorithms that can Handle Imbalanced Data
Several ML algorithms can handle imbalanced data well. The choice often depends on the specific characteristics of your dataset and the problem 
you're trying to solve.  They include: 

 Random Forest (RF) and Decision Trees:
● They can handle imbalanced data because of their inherent ability to find decision boundaries that separate classes well, especially when 

combined with techniques like class weights or cost-sensitive learning.
 Support Vector Machines (SVM):

● SVMs with appropriate kernel functions and adjusted class weights can work effectively with imbalanced data by focusing on support 
vectors and maximizing the margin between classes.

 Neural Networks:
● Techniques like deep learning can handle imbalanced data, especially when using architectures with specific adjustments like class 

weighting, oversampling within the network, or focal loss functions.
 Ensemble Methods:

● Ensemble methods like AdaBoost, XGBoost, LightGBM, or CatBoost, Bagging, or Stacking with base learners that handle imbalanced data 
well can be quite effective. Combining multiple models can often improve performance on imbalanced datasets.

 Naive Bayes:
● Despite its simplicity, Naive Bayes can perform reasonably well with imbalanced data, especially when the class imbalance is not extreme.



3. Evaluation Metrics for Handling Data Imbalance

When dealing with imbalanced datasets in machine learning, using appropriate 
evaluation metrics is crucial. 

Traditional metrics like accuracy may not provide an accurate assessment of a 
model's performance, as they can be misleading when one class significantly 
outnumbers the other(s).

 Instead, it's important to focus on metrics that provide insights into how well a 
model is performing, particularly with respect to the minority class. 

Here are some essential evaluation metrics for handling data imbalance:



Confusion Matrix



1. Precision:
● Precision measures the proportion of true positive predictions (correctly identified minority 

class instances) among all positive predictions (instances classified as the minority class). 
High precision indicates a low rate of false positives.

● Formula: Precision = True Positives / (True Positives + False Positives)
2. Recall (Sensitivity):

● Recall measures the proportion of true positive predictions among all actual positive 
instances (all actual minority class instances). High recall indicates a low rate of false 
negatives.

● Formula: Recall = True Positives / (True Positives + False Negatives)
3. F1-Score:

● The F1-score is the harmonic mean of precision and recall. It provides a balance between 
these two metrics. High F1-scores indicate a model that performs well on both precision and 
recall.

● Formula: F1-Score = 2 * (Precision * Recall) / (Precision + Recall)



4. AUC-ROC (Area Under the Receiver Operating Characteristic Curve):

● AUC-ROC measures the trade-off between the true positive rate (sensitivity) and the false 
positive rate as the classification threshold varies. It provides a comprehensive view of a 
model's ability to distinguish between classes.

5. AUC-PR (Area Under the Precision-Recall Curve):

● AUC-PR focuses on the precision-recall trade-off, which is often more informative for 
imbalanced datasets. It quantifies the area under the precision-recall curve.

6. Confusion Matrix:

● The confusion matrix provides a detailed breakdown of the model's predictions. It includes the 
number of true positives, true negatives, false positives, and false negatives.

● The confusion matrix is used to derive metrics like precision, recall, and accuracy.

7. Specificity:

● Specificity measures the proportion of true negative predictions (correctly identified majority 
class instances) among all actual negative instances (all actual majority class instances). High 
specificity indicates a low rate of false positives.

● Formula: Specificity = True Negatives / (True Negatives + False Positives)



8. Balanced Accuracy:

● Balanced accuracy calculates the average of sensitivity (recall) and specificity, providing an overall 
assessment of a model's performance on both classes.

● Formula: Balanced Accuracy = (Sensitivity + Specificity) / 2

When working with imbalanced datasets, it is advisable to prioritize precision, recall, 
F1-score, and area under the precision-recall curve, as these metrics provide more 
insights into a model's performance, especially for the minority class. 

The choice of metrics should align with the specific problems objectives, considering 
the relative importance of false positives and false negatives. 

Additionally, these metrics should be used in conjunction with appropriate resampling 
or algorithm-level techniques to optimize model performance in imbalanced scenarios.



4. Anomaly Detection

Anomaly detection is a specialized technique for handling data imbalance in 
machine learning, particularly when one class (the anomaly or rare event) is 
vastly outnumbered by the other class (normal or majority class). 

Instead of trying to create a balanced dataset, anomaly detection treats the 
minority class as the anomaly and focuses on identifying rare or unusual 
instances within the data. 



Key Concepts in Anomaly Detection 

1. Anomalies or Outliers: Anomalies are data points that deviate significantly 
from the majority of the data. In imbalanced datasets, the minority class is 
often treated as the anomaly.

2. Detection Methods: Anomaly detection methods are designed to identify 
these rare and unusual instances. They focus on patterns that differ from the 
majority of the data.

3. Unsupervised Learning: Anomaly detection is often performed through 
unsupervised learning, where the algorithm learns to identify anomalies 
without the need for labeled data.



Common Anomaly Detection Techniques
 One-Class SVM (Support Vector Machine):

● One-Class SVM is a popular method for anomaly detection. It defines a hypersphere (or hyperplane in higher 
dimensions) that contains most of the data points. Instances that fall outside this hypersphere are considered anomalies.

 Isolation Forest:
● Isolation Forest is a tree-based method that isolates anomalies by creating a random forest of decision trees. Anomalies 

are expected to require fewer splits to be isolated.
 Local Outlier Factor (LOF):

● LOF is a density-based method that calculates the local density of instances and compares it to the density of their 
neighbors. Anomalies have much lower local densities than their neighbors.

 Autoencoders:
● Autoencoders are neural network architectures used for unsupervised feature learning. They can be trained to 

reconstruct normal data. Instances that cannot be accurately reconstructed are considered anomalies.
 K-Means Clustering:

● K-Means clustering can be used to identify anomalies by looking for data points that are distant from the cluster centers. 
These distant points are potential anomalies.



Benefits of Anomaly Detection:

● Anomaly detection is well-suited for scenarios where the class imbalance is 
extreme, and oversampling or undersampling may not be practical.

● It can uncover rare events, fraud, or abnormal behavior that may be critical 
in applications like cybersecurity, fraud detection, network monitoring, and 
quality control.

● Anomaly detection methods often generalize well to new, unseen anomalies, 
as they are not tailored to specific imbalanced datasets.



Considerations:

● Proper preprocessing and feature engineering are essential for effective anomaly 
detection, as the quality of features can significantly impact the results.

● The choice of the appropriate anomaly detection method depends on the specific 
problem, the nature of the data, and the characteristics of the anomalies.

● Anomaly detection methods might require parameter tuning and careful evaluation 
to achieve the desired balance between false positives and false negatives.

Anomaly detection is a powerful approach for handling data imbalance when one class 
is an extremely rare occurrence.

 It can provide valuable insights into rare events and abnormal behavior without the 
need for balancing the dataset, making it a valuable tool in various real-world 
applications.



5. Cost-Sensitive Learning In Handling Data Imbalance

Cost-sensitive learning is a technique used to address data imbalance in machine 
learning by assigning different misclassification costs to different classes. 

It aims to account for the unequal costs associated with making errors in 
imbalanced datasets, where the consequences of misclassifying instances from 
different classes may vary significantly. 

Cost-sensitive learning helps models prioritize the minority class, which is often 
of greater interest, and minimize the impact of misclassifying those instances.



Cost-Sensitive Learning Techniques
1. Cost Matrices: Cost-sensitive learning often involves defining a cost matrix, where 

each element represents the cost of misclassifying one class as another. This 
matrix is used to adjust the loss function during model training.

2. Cost-Sensitive Algorithms: Some machine learning algorithms and libraries 
provide built-in support for cost-sensitive learning. They allow you to directly 
specify the misclassification costs during model training. Examples include 
cost-sensitive decision trees and cost-sensitive support vector machines.

3. Customized Loss Functions: In some cases, you can define custom loss functions 
that incorporate the misclassification costs. These loss functions penalize errors 
differently for each class, making the model more sensitive to the minority class.



When to Use Cost-Sensitive Learning:

Cost-sensitive learning is valuable when the consequences of misclassification are 
asymmetric and vary across classes. 

It is particularly suitable for imbalanced datasets where one class is rare, and the cost of 
missing instances from that class is high. 

It can be applied to various domains, including medical diagnosis, fraud detection, and 
quality control, where the impact of errors is not uniform across classes. 

Cost-sensitive learning helps create models that are more practical and cost-effective in 
addressing real-world problems with data imbalance.



Ensemble-Based Methods- Galar et al. (2012)
Ensemble-based methods are based on a combination between ensemble learning 
algorithms and one of the previously discussed techniques, namely data and algorithmic 
approaches, or cost-sensitive learning solutions. 

In the case of adding a data level approach to the ensemble learning algorithm, the new 
hybrid method usually preprocess the data before training each classifier. 

On the other hand, cost-sensitive ensembles, instead of modifying the base classifier in 
order to accept costs in the learning process, guide the cost minimization procedure via the 
ensemble learning algorithm. 

In this way, the modification of the base learner is avoided, but the major drawback, which is 
the costs definition, is still present.





Conclusion
Handling data imbalance in machine learning involves addressing skewed class distributions, where one class 
significantly outnumbers others. 

Imbalanced datasets can lead to biased model predictions and poor performance on minority classes. 

Various techniques are employed, including resampling (oversampling and undersampling), algorithm-level 
adjustments, cost-sensitive learning, and anomaly detection. 

Resampling methods aim to balance class proportions, while algorithm-level techniques and cost-sensitive learning 
modify algorithms to consider class imbalance. Ensemble methods combine predictions from several weak base 
learners,

Anomaly detection treats the minority class as anomalies. 

Proper evaluation metrics like precision, recall, and F1-score are essential to assess model performance accurately, 

Making the choice of technique is critical for effective handling of data imbalance.




