Instructor
Prof. Dr. Ivo D. Dinov
Dr. Dinov is a professor of Computational Medicine and Bioinformatics, and Health Behavior and Biological Sciences at the University of Michigan. He serves as a co-Director of the multi-institutional Probability Distributome Project, Associate Director of the Michigan Institute for Data Science (MIDAS), and Associate Director of the Michigan Neuroscience Graduate Program (NGP).
Dr. Dinov is a member of the American Statistical Association (ASA), International Association for Statistical Education (IASE), American Mathematical Society (AMS), American Physical Society (APS), American Association for the Advancement of Science (AAAS), and the International Statistical Institute (ISI). His research involves mathematical modeling, statistical inference, computational processing, scientific visualization, spacekime inference, and predictive analytics.
Course description
This 3-day virtual course is based on the Data Science and Predictive Analytics (DSPA) course that the instructor teaches at the University of Michigan.
The training will provide intermediate to advanced learners with a solid data science foundation to address challenges related to collecting, managing, processing, interrogating, analyzing and interpreting complex health and biomedical datasets using R. Participants will gain skills and acquire a tool-chest of methods, software tools, and protocols that can be applied to a broad spectrum of Big Data problems.
Before diving into the mathematical algorithms, statistical computing methods, software tools, and health analytics, we will discuss a number of driving motivational problems. These will ground all the subsequent scientific discussions, data modeling, and computational approaches. The training will involve active-learning and integrate driving motivational challenges with mathematical foundations, computational statistics, and modern scientific inference.
Building on open-science principles, training will focus on effective, reliable, reproducible, and transformative data-driven discovery. Trainees will develop scientific intuition, computational skills, and data-wrangling abilities to tackle Big biomedical and advanced health data problems. The instructor will provide well-documented R-scripts and software recipes implementing atomic data-filters, as well as complex end-to-end predictive big data analytics solutions.